Advertisement

Towards a Unified Ordering for Superposition-Based Automated Reasoning

  • Jan Jakubův
  • Cezary Kaliszyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

We propose an extension of the automated theorem prover E by the weighted path ordering. Weighted path ordering is theoretically stronger than all the orderings used in E-prover, however its parametrization is more involved than those normally used in automated reasoning. In particular, it depends on a term algebra. We discuss how the parameters for the ordering can be proposed automatically for particular theorem proving problem strategies. We integrate the ordering in E-prover and perform an evaluation on the standard theorem proving benchmarks. The ordering is complementary to the ones used in E prover so far.

Keywords

Automated reasoning Term orderings Weighted path order Superposition calculus 

References

  1. 1.
    Czajka, Ł., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory. J. Autom. Reason. 61, 423–453 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  3. 3.
    Löchner, B.: Things to know when implementing KBO. J. Autom. Reason. 36(4), 289–310 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Löchner, B.: Things to know when implementing LPO. Int. J. Artif. Intell. Tools 15(1), 53–80 (2006)CrossRefGoogle Scholar
  5. 5.
    McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19(3), 263–276 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Middeldorp, A.: Term rewriting lecture notes. In: 9th International School on Rewriting (ISR 2017) (2017)Google Scholar
  7. 7.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  8. 8.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. from CNF to TH0, TPTP v6.4.0. J. Automa. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition - CASC-J8. AI Commun. 29(5), 607–619 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yamada, A., Kusakari, K., Sakabe, T.: Unifying the Knuth-Bendix, recursive path and polynomial orders. In: PPDP, pp. 181–192. ACM (2013)Google Scholar
  11. 11.
    Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. 111, 110–134 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Czech Technical University in PraguePragueCzech Republic
  2. 2.University of InnsbruckInnsbruckAustria

Personalised recommendations