Third-Order Limiter Functions on Non-equidistant Grids

  • Birte SchmidtmannEmail author
  • Manuel Torrilhon
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


We have recently developed a third-order limiter function for the reconstruction of cell interface values on equidistant grids (J Sci Comput, 68(2):624–652, 2016). This work now extends the reconstruction technique to non- uniform grids in one space dimension, making it applicable for more elaborate test cases in the context of finite volume schemes.

Numerical examples show that the new limiter function maintains the optimal third-order accuracy on smooth profiles and avoids oscillations in case of discontinuous solutions.


  1. 1.
    R. Artebrant, H.J. Schroll, Limiter-free third order logarithmic reconstruction. SIAM J. Sci. Comput. 28(1), 359–381 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Čada, M. Torrilhon, Compact third order limiter functions for finite volume methods. J. Comput. Phys. 228(11), 4118–4145 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability preserving high order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.J. Le Veque, Numerical Methods for Conservation Laws, 2nd edn. (Birkhäuser, Basel, 1992)Google Scholar
  6. 6.
    X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Schmidtmann, R. Abgrall, M. Torrilhon, On third-order limiter functions for finite volume methods. Bull. Braz. Math. Soc. 47(2), 753–764 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Schmidtmann, B. Seibold, M. Torrilhon, Relations between WENO3 and third-order limiting in finite volume methods. J. Sci. Comput. 68(2), 624–652 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Schmidtmann, P. Buchmller, M. Torrilhon, Third-order limiting for hyperbolic conservation laws applied to adaptive mesh refinement and non-uniform 2d grids (2017, preprint). arXiv:1705.10608Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MathCCES, RWTH Aachen UniversityAachenGermany

Personalised recommendations