Advertisement

POD-Based Economic Model Predictive Control for Heat-Convection Phenomena

  • Luca MechelliEmail author
  • Stefan Volkwein
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)

Abstract

In the setting of energy efficient building operation, an optimal boundary control problem governed by a linear parabolic advection-diffusion equation is considered together with bilateral control and state constraints. To keep the temperature in a prescribed range with the less possible heating cost, an economic model predictive control (MPC) strategy is applied. To speed-up the MPC method, a reduced-order approximation based on proper orthogonal decomposition (POD) is utilized. A-posteriori error analysis ensures the quality of the POD models. A numerical test illustrates the efficiency of the proposed strategy.

Notes

Acknowledgments

L. Mechelli gratefully acknowledges support by the German Research Foundation DFG grant Reduced-Order Methods for Nonlinear Model Predictive Control.

References

  1. 1.
    A. Alla, S. Volkwein, Asymptotic stability of POD based model predictive control for a semilinear parabolic PDE. Adv. Comput. Math. 41, 1073–1102 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Benner, A. Cohen, M. Ohlberger, K. Willcox, Model Reduction and Approximation: Theory and Algorithms (SIAM Publications, Philadelphia, 2017)CrossRefGoogle Scholar
  3. 3.
    R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems I, vol. 5 (Springer, Berlin, 2000)Google Scholar
  4. 4.
    J. Ghiglieri, S. Ulbrich, Optimal flow control based on POD and MPC and an application to the cancellation of Tollmien-Schlichting waves. Optim. Softw. 29, 1042–1074 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Grimm, M. Gubisch, S. Volkwein, Numerical analysis of optimality-system POD for constrained optimal control. Lect. Notes Comput. Sci. Eng. 105, 297–317 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Grüne, J. Pannek, Nonlinear Model Predictive Control:Theory and Algorithms, 2nd edn. (Springer, London, 2016)zbMATHGoogle Scholar
  7. 7.
    M. Gubisch, S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, chap. 1 (SIAM Publications, Philadelphia, 2017)Google Scholar
  8. 8.
    M. Gubisch, I. Neitzel, S. Volkwein, A-posteriori error estimation of discrete POD models for PDE-constrained optimal controls, in Model Reduction of Parametrized Systems, ed. by P. Benner, M. Ohlberger, A.T. Patera, G. Rozza, K. Urban. Springer-Series Modeling, Simulation and Applications, vol. 17, 213–234 (2017)Google Scholar
  9. 9.
    M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2012)Google Scholar
  11. 11.
    K. Krumbiegel, A. Rösch, A virtual control concept for state constrained optimal control problems. Comput. Optim. Appl. 43, 213–233 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. Mechelli, S. Volkwein, POD-based economic optimal control of heat-convection phenomena (2017, Submitted). Preprint download at: http://nbn-resolving.de/urn:nbn:de:bsz:352-2--au6ei3apyzpv0
  13. 13.
    J.B. Rawlings, D.Q. Mayne. Model Predictive Control: Theory and Design (Nob Hill Publishing, Madison, 2009)Google Scholar
  14. 14.
    F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 22, 616–635 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Tröltzsch, S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83–115 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of KonstanzDepartment of Mathematics and StatisticsKonstanzGermany

Personalised recommendations