Finite Element Methods for Parabolic Problems with Time-Dependent Domains: Application to a Milling Simulation

  • Carsten Niebuhr
  • Alfred SchmidtEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


We consider the finite element discretization of PDEs on time-dependent domains. Approximation of boundary conditions is one of the crucial aspects, as well as an appropriate approach to adaptive mesh refinement. We present some numerical test results and the application to the thermomechanical simulation of a milling process, where the domain changes in time due to material removal.



The authors gratefully acknowledge the financial support by the German Research Foundation (DFG) via the project “Thermomechanical Deformation of Complex Workpieces in Drilling and Milling Processes” (MA1657/21-3) within the DFG Priority Program 1480 “Modeling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”. Furthermore, we thank our project partners from ZeTeM Bremen and IFW Hannover for cooperation.


  1. 1.
    I. Babuška, J. Chleboun, Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions. Math. Comput. 71, 1339–1370 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88, 203–235 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Denkena, A. Schmidt, J. Henjes, D. Niederwestberg, C. Niebuhr, Modeling a Thermomechanical NC-Simulation, in Proceedings of 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Procedia CIRP, vol. 8 (2013), pp. 69–74Google Scholar
  4. 4.
    B. Denkena, A. Schmidt, P. Maaß, D. Niederwestberg, C. Niebuhr, J. Vehmeyer, Prediction of temperature induced shape deviations in dry milling, in Proceedings of 15th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Procedia CIRP, vol. 31 (2015), pp. 340–345Google Scholar
  5. 5.
    B. Denkena, P. Maaß, A. Schmidt, D. Niederwestberg, J. Vehmeyer, C. Niebuhr, P. Gralla, Thermomechanical deformation of complex workpieces in milling and drilling processes, in Thermal Effects in Complex Machining Processes - Final Report of the DFG Priority Program, ed. by D. Biermann, F. Hollmann. Springer LNPE Series, vol. 1480 (Springer, Berlin, 2017), pp. 219–250Google Scholar
  6. 6.
    T.-P. Fries, A. Zilian, On time integration in the XFEM. Int. J. Numer. Methods Eng. 79, 69–93 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Niebuhr, FE-CutS—finite elemente modell für makroskopische Zerspanprozesse: modellierung, analyse und simulation, PhD thesis, University of Bremen, 2017Google Scholar
  8. 8.
    A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. Lecture Nodes in Computational Science and Engineering (Springer, Berlin, 2004)Google Scholar
  9. 9.
    A. Schmidt, E. Bänsch, M. Jahn, A. Luttmann, C. Niebuhr, J. Vehmeyer, Optimization of engineering processes including heating in time-dependent domains, in System Modeling and Optimization, ed. by L. Bociu, J.A. Desideri, A. Habbal. Springer IFIP AICT Series, vol. 494 (Springer, Berlin, 2017), pp. 452–461Google Scholar
  10. 10.
    A. Schmidt, C. Niebuhr, D. Niederwestberg, J. Vehmeyer, Modelling, simulation, and optimization of thermal deformations from milling processes, in Progress in Industrial Mathematics at ECMI 2016, ed. by P. Quintela, P. Barral, D. Gomez, F.J. Pena, J. Rodriguez, P. Salgado, M.E. Vazquez-Mendez. Springer Mathematics in Industry Series, vol. 26 (Springer, Berlin, 2017), pp. 337-343Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of BremenCenter for Industrial Mathematics (ZeTeM)BremenGermany
  2. 2.MAPEX Center for Materials and ProcessesBremenGermany

Personalised recommendations