Advertisement

What Is a Post-Lie Algebra and Why Is It Useful in Geometric Integration

  • Charles Curry
  • Kurusch Ebrahimi-Fard
  • Hans Munthe-Kaas
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)

Abstract

We explain the notion of a post-Lie algebra and outline its role in the theory of Lie group integrators.

Notes

Acknowledgements

The research on this paper was partially supported by the Norwegian Research Council (project 231632).

References

  1. 1.
    C. Bai, L. Guo, X. Ni, Nonabelian generalized Lax pairs, the classical Yang–Baxter equation and PostLie algebras. Commun. Math. Phys. 297(2), 553–596 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ch. Brouder, Runge-Kutta methods and renormalization. Eur. Phys. J. C12, 512–534 (2000)Google Scholar
  3. 3.
    F. Chapoton, M. Livernet,Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Chapoton, F. Patras, Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula. Int. J. Algebra Comput. 23(4), 853–861 (2013)CrossRefGoogle Scholar
  5. 5.
    Ph. Chartier, E. Hairer, G. Vilmart, Algebraic structures of B-series. Found. Comput. Math. 10, 407–427 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.T. Chu, L.K. Norris, Isospectral flows and abstract matrix factorizations. SIAM J. Numer. Anal. 25, 1383–1391 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Deift, L.C. Li, C. Tomei, Matrix factorizations and integrable systems. Commun. Pure Appl. Math. 42(4), 443–521 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Ebrahimi-Fard, I. Mencattini, Post-Lie algebras, factorization theorems and Isospectral flows, arXiv:1711.02694Google Scholar
  9. 9.
    K. Ebrahimi-Fard, A. Lundervold, H.Z. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas, Post-Lie algebras and Isospectral flows. SIGMA 25(11), 093 (2015)Google Scholar
  11. 11.
    K. Ebrahimi-Fard, I. Mencattini, H.Z. Munthe-Kaas,Post-Lie algebras and factorization theorems. J. Geom. Phys. 119, 19–33 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Fløystad, H. Munthe-Kaas, Pre- and Post-Lie Algebras: The Algebro-Geometric View. Abel Symposium Series (Springer, Berlin, 2018)Google Scholar
  13. 13.
    R. Grossman, R. Larson, Hopf algebraic structures of families of trees. J. Algebra 26, 184–210 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31 (Springer, Berlin, 2002)Google Scholar
  15. 15.
    A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods. Acta Numer. 9, 215–365 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Lundervold, H.Z. Munthe-Kaas, On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)zbMATHGoogle Scholar
  17. 17.
    D. Manchon, A short survey on pre-lie algebras, in Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ed. by A. Carey. E. Schrödinger Institut Lectures in Mathematics and Physics (European Mathematical Society, Helsinki, 2011)Google Scholar
  18. 18.
    R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier, Butcher series: a story of rooted trees and numerical methods for evolution equations. Asia Pac. Math. Newsl. 7, 1–11 (2017)MathSciNetGoogle Scholar
  19. 19.
    H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods. BIT Numer. Math. 35, 572–587 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Munthe-Kaas, Runge–Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Munthe-Kaas, W. Wright, On the Hopf Algebraic Structure of Lie Group Integrators. Found. Comput. Math. 8(2), 227–257 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Vallette, Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Charles Curry
    • 1
  • Kurusch Ebrahimi-Fard
    • 1
  • Hans Munthe-Kaas
    • 2
  1. 1.Norwegian University of Science and Technology (NTNU)Institutt for matematiske fagTrondheimNorway
  2. 2.University of BergenDepartment of MathematicsBergenNorway

Personalised recommendations