Advertisement

A Least-Squares Method for a Monge-Ampère Equation with Non-quadratic Cost Function Applied to Optical Design

  • N. K. YadavEmail author
  • J. H. M. ten Thije Boonkkamp
  • W. L. IJzerman
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)

Abstract

Freeform optical surfaces can transfer a given light distribution of the source into a desired distribution at the target. Freeform optical design problems can be formulated as a Monge-Ampère type differential equation with transport boundary condition, using properties of geometrical optics, conservation of energy, and the theory of optimal mass transport. We present a least-squares method to compute freeform lens surfaces corresponding to a non-quadratic cost function. The numerical algorithm is capable to compute both convex and concave surfaces.

References

  1. 1.
    C.R. Prins, R. Beltman, J.H.M. ten Thije Boonkkamp, W.L. IJzerman, T.W. Tukker, A least-squares method for optimal transport using the Monge-Ampère equation. SIAM J. Sci. Comput. 37(6), B640–B660 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Oliker, Differential equations for design of a freeform single lens with prescribed irradiance properties. Opt. Eng. 53(3), 031302 (2013)Google Scholar
  3. 3.
    K. Brix, Y. Hafizogullari, A. Platen, Designing illumination lenses and mirrors by the numerical solution of Monge-Ampère equations. J. Opt. Soc. Am. A 32(11), 2227–2236 (2015)CrossRefGoogle Scholar
  4. 4.
    N.K. Yadav, J.H.M. ten Thije Boonkkamp, W.L. IJzerman. A least-squares method for the design of two-reflector optical system. J. Comput. Appl. Math. (2017, manuscript submitted)Google Scholar
  5. 5.
    N.K. Yadav, J.H.M. ten Thije Boonkkamp, W.L. IJzerman, A Monge-Ampère problem with non-quadratic cost function to compute freeform lens surfaces. J. Sci. Comput. (2018, manuscript submitted)Google Scholar
  6. 6.
    C. Villani, Topics in Optimal Transportation, vol. 58 (American Mathematical Society, Providence, RI, 2003)zbMATHGoogle Scholar
  7. 7.
    V. Oliker, Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport. Arch. Ration. Mech. Anal. 201(3), 1013–1045 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. K. Yadav
    • 1
    Email author
  • J. H. M. ten Thije Boonkkamp
    • 1
  • W. L. IJzerman
    • 1
    • 2
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips LightingPhilips ResearchEindhovenThe Netherlands

Personalised recommendations