Advertisement

Color, Timbre, and Echoes: How Source-Filter Processes Determine Why We See What We See and Hear What We Hear

  • Stephen Handel
Chapter

Abstract

Handel believes that color and timbre are properties of things, so the perceptual problem is to figure out the color of an object independent of illumination and the timbre of the source independent of the pitch. But because the energy at different wavelengths or frequencies of the source excitation is altered by the reflection or transmission of the filter in various ways, it is impossible to do so without context and previous experience. The performance at color-matching tasks and the discrimination of instruments at different pitches shows how difficult this is, but increasing the richness of the context improves performance for both color and timbre. Echolocation, based on the comparison of the self-produced whistles or clicks and their reflection, shares the same difficulties.

References

  1. Allen, E. J., & Oxenham, A. J. (2014). Symmetric interactions and interference between pitch and timbre. Journal of the Acoustical Society of America, 135, 1371–1379.  https://doi.org/10.1121/1.4863269CrossRefPubMedGoogle Scholar
  2. American National Standards Institute. (1973). Psychoacoustics terminology. S3.20. New York, NY: American National Standards Institute.Google Scholar
  3. Ammons, C. H., Worchel, P., & Dallenbach, K. M. (1953). “Facial vision”: The perception of obstacles out of doors by blindfolded and blindfolded-deafened subjects. American Journal of Psychology, 56, 519–553.CrossRefGoogle Scholar
  4. Ashmead, D. H., & Wall, R. S. (1999). Auditory perception of walls via spectral variations in the ambient sound field. Journal of Rehabilitation Research and Development, 36, 313–322.PubMedGoogle Scholar
  5. Ballas, J. (1993). Common factors in the identification of an assortment of brief everyday sounds. Journal of Experimental Psychology: Human Perception and Performance, 19, 250–267.PubMedGoogle Scholar
  6. Bauer, C. M., Hirsh, G. V., Zajac, L., Koo, B.-B., Collignon, O., & Merabet, L. B. (2017). Multimodal MRI-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS One, 12, 1–26.  https://doi.org/10.1371/journal.pone.0173064CrossRefGoogle Scholar
  7. Brainard, D. H., & Hurlbert, A. C. (2015). Colour vision: Understanding #thedress. Current Biology, 25, R549–R568.  https://doi.org/10.1016/j.cub.2015.05.020CrossRefGoogle Scholar
  8. Brainard, D. H., & Maloney, L. T. (2011). Surface color perception and equivalent illumination models. Journal of Vision, 11(5), 1–18.  https://doi.org/10.1167/11.5.1CrossRefGoogle Scholar
  9. Bramao, I., Reis, A., Peterson, K. M., & Faisca, L. (2011). The role of color information on object recognition: A review and meta-analysis. Acta Psychologica, 136, 244–253.  https://doi.org/10.1016/j.actpsy.2011.06.010CrossRefGoogle Scholar
  10. Cornsweet, T. (1970). Visual perception. New York, NY: Academic Press.CrossRefGoogle Scholar
  11. Cott, H. B. (1940). Adaptive coloration in animals. London, UK: Methuen.Google Scholar
  12. Dedrick, D. (2015). Some philosophical questions about color. In A. J. Elliot, M. D. Fairchild, & A. Franklin (Eds.), Handbook of color psychology (pp. 131–145). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  13. Donelli, A., Brayda, L., & Gori, M. (2016). Depth echolocation learnt by novice sighted people. PLoS One, 11, e0156654.  https://doi.org/10.1167/journal.pone.0156654CrossRefGoogle Scholar
  14. Erickson, M. L., & Perry, S. R. (2003). Can listeners hear who is singing? A comparison of three-note and six-note discrimination tasks. Journal of Voice, 17, 353–369.  https://doi.org/10.1067/S0892-19970903000021-3CrossRefPubMedGoogle Scholar
  15. Fujisaki, W., Soda, N., Motoyoshi, I., Komatsu, H., & Nishida, S. (2014). Audiovisual integration in the human perception of materials. Journal of Vision, 14, 1–20.  https://doi.org/10.1167/14.4.12CrossRefGoogle Scholar
  16. Fujisaki, W., Tokita, M., & Kariya, K. (2015). Perception of the material properties of wood based on vision, audition and touch. Vision Research, 109, 185–200.  https://doi.org/10.1016/j.visres.2014.11.020CrossRefPubMedGoogle Scholar
  17. Gaver, W. W. (1993). What in the world do we hear?: An ecological approach to auditory event perception. Ecological Psychology, 5, 1–29.CrossRefGoogle Scholar
  18. Gegenfurtner, K. R., Bloj, M., & Toscari, M. (2015). The many colours of “the dress”. Current Biology, 25, R523–R548.  https://doi.org/10.1016/j.cub.2015.04.043CrossRefGoogle Scholar
  19. Gilchrist, A. (2015). Perceptual organization in lightness. In J. Wagemans (Ed.), The Oxford handbook of perceptual organization (pp. 391–412). Oxford, UK: Oxford University Press.Google Scholar
  20. Giordano, B. L., & McAdams, S. (2010). Sound source mechanics and musical timbre: Evidence from previous studies. Music Perception, 28, 155–168.  https://doi.org/10.1525/mp.2010.28.2.155CrossRefGoogle Scholar
  21. Gough, C. E. (2016). Violin acoustics. Acoustics Today, 12(2), 22–30.Google Scholar
  22. Guyot, P., Houix, O., Misdaris, N., Susini, P., Pinquier, J., & Andre-Obrecht, R. (2017). Identification of categories of liquid sounds. Journal of the Acoustical Society of America, 142, 878–889.  https://doi.org/10.1121/1.4996124CrossRefPubMedGoogle Scholar
  23. Handel, S., & Erickson, M. L. (2001). A rule of thumb: The bandwidth for timbre invariance is an octave. Music Perception, 19, 121–0126.  https://doi.org/10.1525/mp.2001.19.1.121CrossRefGoogle Scholar
  24. Haywood, N. R., & Roberts, B. (2013). Build-up of auditory stream segregation induced by tone sequences of constant or alternating frequency and the resetting effects of single deviants. Journal of Experimental Psychology: Human Perception and Performance, 39, 1652–1666.  https://doi.org/10.1037/a0032562CrossRefPubMedGoogle Scholar
  25. Hjoetkjaer, J., & McAdams, S. (2016). Spectral and temporal cues for perception of material and action categories in impacted sound sources. Journal of the Acoustical Society of America, 140, 409–420.  https://doi.org/10.1121/1.4955181CrossRefGoogle Scholar
  26. Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.Google Scholar
  27. Kaiser, P. K., & Boynton, R. M. (1996). Human color vision (2nd ed.). Washington, DC: Optical Society of America.Google Scholar
  28. Katz, D. (1925). Der Aufbauder Tastwelt (The World of Touch) (L. E. Krueger, trans. & Ed.). Hillsdale, NJ: LEA Associates.Google Scholar
  29. Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2014). A summary of research investigating echolocation abilities of blind and sighted humans. Hearing Research, 310, 60–68.  https://doi.org/10.1016/j.heares.2014.01.010CrossRefPubMedGoogle Scholar
  30. Kopco, N., & Shinn-Cunningham, B. G. (2011). Effect of stimulus spectrum on distance perception for nearby sources. Journal of the Acoustical Society of America, 130, 1530–1541.  https://doi.org/10.1121/1.3613705CrossRefPubMedGoogle Scholar
  31. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbre: Common dimensions, specificities, and latent subject classes. Psychological Research, 58, 177–192.  https://doi.org/10.1007/BF00419633CrossRefPubMedGoogle Scholar
  32. Nathmann, A., & Malcolm, G. L. (2016). Eye guidance during real-world scene search: The role color plays in central and peripheral vision. Journal of Vision, 16, 1–16.  https://doi.org/10.1167/16.2.3CrossRefGoogle Scholar
  33. O’Modhrain, S., & Gillespie, R. B. (2018). One more, with feeling: Revisiting the role of touch in performer-instrument interaction. In S. Papetti & C. Saitis (Eds.), Musical haptics (Vol. 18, pp. 11–27). Springer.Google Scholar
  34. Ogg, l., Sleve, R., & Idsardi, J. (2017). The time course of sound category identification: Insights into acoustic features. Journal of the Acoustical Society of America, 142, 3459–3473.  https://doi.org/10.1121/1.5014057CrossRefPubMedGoogle Scholar
  35. Papadopoulos, T., Edwards, D. S., Rowan, D., & Allen, R. (2011). Identification of auditory cues utilized in human echolocation-objective measurement results. Biomedical Signal Processing and Control, 6, 280–290.  https://doi.org/10.1016/jbspc.2011.03.005CrossRefGoogle Scholar
  36. Radonjić, A., Gottaris, N. P., & Brainard, D. H. (2015). Color constancy in a naturalistic, goal-directed task. Journal of Vision, 15, 1–21.  https://doi.org/10.1167/15.13.3CrossRefGoogle Scholar
  37. Rowland, H. M. (2009). From Abbot Thayer to the present day: What have we learned about the function of countershading? Philosophical Transactions of the Royal Society, Section B, 364, 519–527.  https://doi.org/10.1098/rstb.2008.0261CrossRefGoogle Scholar
  38. Saitis, C., Järveläinen, H., & Fritz, C. (2018). The role of haptic cues in musical instrument quality perception. In S. Papetti & C. Saitis (Eds.), Musical haptics (pp. 73–93). Springer.Google Scholar
  39. Steele, K. M., & Williams, A. K. (2006). Is the bandwidth for timbre invariance only one octave? Music Perception, 23, 215–220.  https://doi.org/10.1525/mp.2006.23.215CrossRefGoogle Scholar
  40. Thaler, L., Reich, G. W., Zhang, X., Wang, D., Smith, G. E., Tao, Z., … Antonio, M. (2017). Mouth-clicks used by blind expert human echolocators – Signal description and model based signal synthesis. PLoS Computational Biology, 13, e1005670.  https://doi.org/10.1371/journal.pchi.1005670CrossRefPubMedPubMedCentralGoogle Scholar
  41. Thayer, A. H. (1909). Concealing-coloration in the animal kingdom: An exposition of the laws of disguise through color and pattern: Being a summary of abbot H. Thayer’s discoveries. New York, NY: Macmillan.Google Scholar
  42. Wallisch, P. (2017). Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “The dress”. Journal of Vision, 17, 5.  https://doi.org/10.1167/17.4.5CrossRefPubMedGoogle Scholar
  43. Wallmeier, L., GeBele, N., & Wiegrebe, L. (2013). Echolocation versus echo suppression in humans. Proceedings of the Royal Society, B, 280, 2013.1428.  https://doi.org/10.1098/rspb.2013.1428CrossRefGoogle Scholar
  44. Wallmeier, L., & Wiegrebe, L. (2014). Ranging in human sonar: Effects of additional early reflections and exploratory head movements. PLoS One, 9, e15363.  https://doi.org/10.1371/journal.pone.0115363CrossRefGoogle Scholar
  45. Warren, W. H. J., & Verbrugge, R. R. (1984). Auditory perception of breaking and bouncing events. Journal of Experimental Psychology: Human Perception and Performance, 10, 704–712.PubMedGoogle Scholar
  46. Witzel, C., Racey, C., & O’Reagan, J. K. (2017). The most reasonable explanation of the “dress”: Implicit assumptions about illumination. Journal of Vision, 17, 1–19.  https://doi.org/10.1016/17.2.1

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Stephen Handel
    • 1
  1. 1.PsychologyUniversity of Tennessee, KnoxvilleKnoxvilleUSA

Personalised recommendations