Advertisement

Multistability

  • Stephen Handel
Chapter

Abstract

Reversing or multistable figures demonstrate that sensations are ambiguous, and could arise from different external objects. The alternative organizations are equally strong, and the percepts shift back and forth at random intervals. Even if people try, they cannot completely stop the reversals. There are many types of reversing figures: spatial perspective, figure-ground, apparent motion, and pitch grouping. Regardless of stimulus or modality, the timing between the reversals is identical and if two reversing figures are presented together, they reverse independently; there is no interaction. Handel concludes that any explanation must include physiological factors such as the alternating fatigue and recovery of different sets of peripheral receptors bringing about the perceptual shifts, and cognitive factors such as the knowledge and familiarity of the alternatives.

References

  1. Adams, P. A. A., & Haire, M. (1958). Structural and conceptual factors in the perception of double-cube figures. American Journal of Psychology, 71(3), 548–886.  https://doi.org/10.2307/1420250CrossRefPubMedGoogle Scholar
  2. Adams, P. A. A., & Haire, M. (1959). The effect of orientation on the reversal of one cube inscribed in another. American Journal of Psychology, 72(2), 296–299.  https://doi.org/10.2307/1419384CrossRefGoogle Scholar
  3. Alais, D., & Blake, R. (2015). Binocular rivalry and perceptual ambiguity. In J. Wagemans (Ed.), The Oxford handbook of perceptual organization (pp. 775–798). Oxford, UK: Oxford University Press.Google Scholar
  4. Brancucci, A., & Tommasi, L. (2011). “Binaural rivalry”: Dichotic listening as a tool for the investigation of the neural correlates of consciousness. Brain and Cognition, 76, 218–224.  https://doi.org/10.1016/jbandc.2011.02.007CrossRefPubMedGoogle Scholar
  5. Brascamp, J. W., van Ee, R., Pestman, W. R., & van den Berg, A. V. (2005). Distributions of alternation rates in various forms of bistable perception. Journal of Vision, 5, 287–298.  https://doi.org/10.1167/5.4.1CrossRefPubMedGoogle Scholar
  6. Braun, J., & Mattia, M. (2010). Attractors and noise: Twin drivers of decsions and multistability. NeuroImage, 52, 740.  https://doi.org/10.1016/j.neuroimage.2009.12.126CrossRefPubMedGoogle Scholar
  7. Carter, O., Konkle, T., Wang, Q., Haywood, V., & Moore, C. (2008). Tactile rivalry demonstrated with an ambiguous apparent-motion quartet. Current Biology, 18, 1050–1054.  https://doi.org/10.1016/j.cub.2008.06.027CrossRefPubMedGoogle Scholar
  8. Deutsch, D. (1974). An auditory illusion. Nature, 251, 307–309.CrossRefGoogle Scholar
  9. Fisher, G. H. (1967). Measuring ambiguity. American Journal of Psychology, 80(4), 541–557.CrossRefGoogle Scholar
  10. Fisher, G. H. (1968). Ambiguity of form: Old and new. Perception & Psychophysics, 4(3), 189–192.CrossRefGoogle Scholar
  11. Freeman, E., & Driver, J. (2008). Direction of visual apparent motion driven solely by timing of a static sound. Current Biology, 18, 1262–1266.  https://doi.org/10.1016/j.cub.2008.07.086CrossRefPubMedGoogle Scholar
  12. Gepshtein, S., & Kubovy, M. (2007). The lawful perception of apparent motion. Journal of Vision, 7(8), 9, 1–15.  https://doi.org/10.1167/7.8.9CrossRefPubMedGoogle Scholar
  13. Harrar, V., Winter, R., & Harris, L. R. (2008). Visuotactile apparent motion. Perception & Psychophysics, 70, 807–817.  https://doi.org/10.3758/PP.70.5.807CrossRefGoogle Scholar
  14. Klink, P. C., van Wezel, R. J. A., & van Ee, R. (2012). United we sense, divided we fail: Context-driven perception of ambiguous visual stimuli. Philosophical Transactions of the Royal Society B, 367, 932–941.  https://doi.org/10.1098/rstb.2011.0358CrossRefGoogle Scholar
  15. Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: When bottom-up and top-down coincide. Brain and Cognition, 69, 138–147.  https://doi.org/10.1016/j.bandc.2008.06.005CrossRefPubMedGoogle Scholar
  16. Korte, A. (1915). Kinematoskopische Untersuchungen (Cinematoscopic investigations). Zeitschrift fur Psychologie, 72, 193–216.Google Scholar
  17. Lakatos, S., & Shepard, R. N. (1997). Constraints common to apparent motion in visual, tactile and auditory space. Journal of Exerimental Psychology: Human Perception and Performance, 23, 1050–1060.Google Scholar
  18. Liaci, E., Bach, M., van Elst, L. T., Heinrich, S. P., & Kommeler, J. (2016). Ambiguity in tactile apparent motion perception. PLoS One, 11(5), e0152736.  https://doi.org/10.1371/journal.pone.0152736CrossRefPubMedPubMedCentralGoogle Scholar
  19. Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130, 748–768.  https://doi.org/10.1037/0033-2909.130.5.748CrossRefPubMedGoogle Scholar
  20. Macnik, S. L., Martinez-Conde, S., & Blakeslee, S. (2010). Sleights of mind. New York, NY: Henry Holt.Google Scholar
  21. Occelli, V., Spence, C., & Zampini, M. (2010). Assessing the effect of sound complexity on the audiotactile cross-modal dynamic capture task. The Quarterly Journal of Experimental Psychology, 63, 694–704.  https://doi.org/10.1080/17470210903068989CrossRefPubMedGoogle Scholar
  22. Pastukhov, A., Vonau, V., & Braun, J. (2012). Believable change: Bistable reversals are governed physical plausibility. Journal of Vision, 12, 1–16.  https://doi.org/10.1167/12.1.17CrossRefGoogle Scholar
  23. Popkin, G. (2014, September 26). On the edge. Science, 345, 1552–1554.CrossRefGoogle Scholar
  24. Pressnitzer, D., & Hupe, J. M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16(13), 1351–1357.  https://doi.org/10.1016/j.cub.2006.05.054CrossRefPubMedGoogle Scholar
  25. Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
  26. Sanabria, D., Soto-Faraco, S., & Spence, C. (2005). Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion. Experimental Brain Research, 166, 548–558.  https://doi.org/10.1007/s00221-005-2395-6CrossRefPubMedGoogle Scholar
  27. Soto-Faraco, S., Spence, C., & Kingstone, A. (2004). Congruency effects between auditory and tactile motion: Extending the phenomenon of cross-modality dynamic capture. Cognitive, Affective, & Behavioral Neuroscience, 4, 208–217.CrossRefGoogle Scholar
  28. Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Science, 13, 310–318.  https://doi.org/10.1016/j.tics.2009.04.006CrossRefGoogle Scholar
  29. Thossen, S., & Bendixen, A. (2017). Subjective perceptual organization of a complex auditory scene. Journal of the Acoustical Society of America, 141, 265–276.  https://doi.org/10.1121/1.4973806CrossRefGoogle Scholar
  30. Wallis, G., & Ringelhan, S. (2013). The dynamics of perceptual rivalry in bistable and tristable perception. Journal of Vision, 13, 1–21.  https://doi.org/10.1167/13.2.24CrossRefGoogle Scholar
  31. Ward, E. J., & Scholl, B. J. (2015). Stochastic or systematic? Seemingly random perceptual switching in bistable events triggered by transient unconscious cues. Journal of Experimental Psychology: Human Perception and Performance, 41, 929–939.  https://doi.org/10.1037/a0038709CrossRefPubMedGoogle Scholar
  32. Warren, R. M. (1999). Auditory perception: A new analysis and synthesis. Cambridge, UK: Cambridge University Press.Google Scholar
  33. Warren, R. M., & Gregory, R. L. (1958). An auditory analogue of the visual reversible figure. American Journal of Psychology, 71, 467–473.  https://doi.org/10.2307/1420267CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Stephen Handel
    • 1
  1. 1.PsychologyUniversity of Tennessee, KnoxvilleKnoxvilleUSA

Personalised recommendations