Advertisement

Review of the Impacts on Air Quality and Human Health of Land-Use Changes Induced by Non-food Biomass Production

  • Benoît Gabrielle
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 30)

Abstract

Biomass production has developed significantly in the latest decades to meet the growing needs of the bioeconomy sector. This trend is expected to continue in the near future to substitute dwindling fossil resources. Concerns were recently raised on the consequences of expanding feedstock production on land use worldwide, prompting a surge in scientific publications. These consequences may be analysed through a three-step causal chain relating drivers of feedstock production, changes in land use (LUC), and environmental impacts. Among these, atmospheric pollution or human health impacts, as related to LUC, are rarely evaluated although they are a prime concern for environmental policies and the sustainability of the bioeconomy.

Here, we reviewed current research on the LUC-mediated effects of biomass development on air quality and human health through a systematic survey of literature from 1975 to 2015. Only 17 articles addressing air quality and 9 papers addressing human health were retrieved. Most were published after 2014, implying that these topics only emerged recently. Most studies focused on liquid biofuels (1st and 2nd generation), although bio-materials and bio-electricity were also represented. These studies covered several geographical areas, with an emphasis on Europe and South America. Given the small size of our sample and the diversity of contexts it addressed, it is difficult to evidence clear-cut trends on the impacts of substituting fossil resources with biomass on human health and air quality.. Overall, the benefits of this substitution appeared mixed and dependent on the type of end-product considered. First-generation biofuels were out-performed by their second-generation counterparts, but this trend relies on a low number of references. Life-cycle assessment was the predominant method used to estimate the impacts of biomass development on human health or air pollution. This emerging field warrants further efforts toward more thorough assessments of LUC effects.

Keywords

Biofuels Bioenergy Biomass Land-use change Atmospheric pollution Toxicity Human health LCA 

Notes

Acknowledgements

This work was funded by the French Environment and Energy Management Agency (ADEME) and the Ministry of Agriculture and Forestry under grant contract 12-60-C0004. Assistance from Sophie Le Perchec (INRA Rennes) in the literature search is acknowledged, as well as the following scientists who contributed to the detailed analysis of the scientific articles: Laure Bamière (INRA Grignon), Aude Barbottin (INRA Grignon), Valentin Bellassen (INRA Dijon), Martial Bernoux (IRD Montpellier), Cécile Bessou (CIRAD Montpellier), Antonio Bispo (ADEME Angers), François Chiron (AgroParisTech, Orsay), Stéphane De Cara (INRA Grignon), Patrice Dumas (CIRAD Montpellier), Guillaume Décocq (Univ. Picardie Jules-Vernes, Amiens), Jean-François Dhôte (INRA Nancy), Monia El Akkari (INRA Paris), Nathalie Frascaria (AgroParisTech, Orsay), Sabrina Gaba (INRA Dijon), Philippe Lescoat (AgroParisTech, Paris), David Makowski (INRA Grignon), Olivier Réchauchère (INRA Paris), and Julie Wohlfahrt (INRA Mirecourt).

The author would also like to thank two anonymous readers for their insightful comments, which made it possible to improve the quality of this article.

Supplementary material

467539_1_En_7_MOESM1_ESM.xlsx (38 kb)
Gabrielle air health SM OK (XLSX 37 kb)

References

  1. Bamiere L, Bellassen V (this volume) Review of the impacts on greenhouse gas emissions of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  2. Bellora C, Bureau JC (2013) The indirect trade and virtual land effects of a greener EU agriculture. 7èmes Journées de Recherche en Sciences Sociales dans le domaine de l’agriculture INRA-SFER-CIRAD, Angers, December 12–13, 2013Google Scholar
  3. Berndes G, Ahlgren S, Borjesson P, Cowie AL (2013) Bioenergy and land use change-state of the art. WIREs 2(3):282–303.  https://doi.org/10.1002/wene.41 CrossRefGoogle Scholar
  4. Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31(1):1–79.  https://doi.org/10.1051/agro/2009039 CrossRefGoogle Scholar
  5. Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sust Energ Rev 16(7):4638–4650.  https://doi.org/10.1016/j.rser.2012.04.016 CrossRefGoogle Scholar
  6. Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16(4):28-1–28-9.  https://doi.org/10.1029/2001gb001812 CrossRefGoogle Scholar
  7. Broch A, Hoekman SK, Unnasch S (2013) A review of variability in indirect land use change assessment and modeling in biofuel policy. Environ Sci Pol 29:147–157.  https://doi.org/10.1016/j.envsci.2013.02.002 CrossRefGoogle Scholar
  8. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Ribeiro S, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Stechow Cv (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–332CrossRefGoogle Scholar
  9. Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99 – does it matter which one you choose? Int J Life Cycle Assess 8(4):191–200.  https://doi.org/10.1065/lca2003.06.115 CrossRefGoogle Scholar
  10. El Akkari M, Sandoval M, Le Perchec S, Réchauchère O (this volume) Textual analysis of published research articles on the environmental impacts of land-use change. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  11. Fiorentino G, Ripa M, Mellino S, Fahd S, Ulgiati S (2014) Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J Clean Prod 66:174–187.  https://doi.org/10.1016/j.jclepro.2013.11.043 CrossRefGoogle Scholar
  12. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574.  https://doi.org/10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  13. Gabrielle B, Barbottin A, Wohlfahrt J (this volume) The environmental impacts of non-food biomass production through land-use changes: scope, foci and methodology of current research. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  14. Ginnebaugh DL, Liang JY, Jacobson MZ (2010) Examining the temperature dependence of ethanol (E85) versus gasoline emissions on air pollution with a largely-explicit chemical mechanism. Atmos Environ 44(9):1192–1199.  https://doi.org/10.1016/j.atmosenv.2009.12.024 CrossRefGoogle Scholar
  15. Hauschild MZ, Huijbregts M, Jolliet O, MacLeod M, Margni M, van de Meent DV, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037.  https://doi.org/10.1021/es703145t CrossRefPubMedGoogle Scholar
  16. Labouze E, Honore U, Moulay L, Couffignal B, Beekmann M (2004) Photochemical ozone creation potentials – a new set of characterization factors for different gas species on the scale of Western Europe. Int J Life Cycle Assess 9(3):187–195.  https://doi.org/10.1065/lca2004.04.155 CrossRefGoogle Scholar
  17. Larsen RK, Jiwan N, Rompas A, Jenito J, Osbeck M, Tarigan A (2014) Towards ‘hybrid accountability’ in EU biofuels policy? Community grievances and competing water claims in the Central Kalimantan oil palm sector. Geoforum 54:295–305.  https://doi.org/10.1016/j.geoforum.2013.09.010 CrossRefGoogle Scholar
  18. Liptow C, Tillman AM (2012) A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16(3):420–435.  https://doi.org/10.1111/j.1530-9290.2011.00405.x CrossRefGoogle Scholar
  19. Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manage Assoc 54(6):644–680.  https://doi.org/10.1080/10473289.2004.10470936 CrossRefGoogle Scholar
  20. Poeschl M, Ward S, Owende P (2012) Environmental impacts of biogas deployment – part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod 24:168–183.  https://doi.org/10.1016/j.jclepro.2011.10.039 CrossRefGoogle Scholar
  21. Réchauchère O, El Akkari M, Le Perchec S, Makowski D, Gabrielle B, Bispo A (this volume) An innovative methodological framework for analyzing existing scientific research on land-use change and associated environmental impacts. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  22. Schwartz J, Bind MA, Koutrakis P (2017) Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ Health Perspect 125(1):23–29.  https://doi.org/10.1289/ehp232 CrossRefPubMedGoogle Scholar
  23. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefPubMedGoogle Scholar
  24. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485(7397):229–232CrossRefPubMedGoogle Scholar
  25. Steinemann A (2000) Rethinking human health impact assessment. Environ Impact Assess Rev 20(6):627–645.  https://doi.org/10.1016/S0195-9255(00)00068-8 CrossRefGoogle Scholar
  26. van Vliet J, Magliocca NR, Buchner B, Cook E, Benayas JMR, Ellis EC, Heinimann A, Keys E, Lee TM, Liu JG, Mertz O, Meyfroidt P, Moritz M, Poeplau C, Robinson BE, Seppelt R, Seto KC, Verburg PH (2016) Meta-studies in land use science: current coverage and prospects. Ambio 45(1):15–28.  https://doi.org/10.1007/s13280-015-0699-8 CrossRefPubMedGoogle Scholar
  27. von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Clean Prod 15(7):607–619.  https://doi.org/10.1016/j.jclepro.2006.03.002 CrossRefGoogle Scholar

Annex: References in the Study Corpus Addressing Impacts on Air Quality and Human Health

  1. Alvarenga RAF, Dewulf J, De Meester S, Wathelet A, Villers J, Thommeret R, Hruska Z (2013) Life cycle assessment of bioethanol-based PVC. Part 2: consequential approach. Biofuels Bioprod Biorefin-Biofpr 7(4):396–405.  https://doi.org/10.1002/bbb.1398 CrossRefGoogle Scholar
  2. Bottcher H, Frank S, Havlik P, Elbersen B (2013) Future GHG emissions more efficiently controlled by land-use policies than by bioenergy sustainability criteria. Biofuels Bioprod Biorefin-Biofpr 7(2):115–125.  https://doi.org/10.1002/bbb.1369 CrossRefGoogle Scholar
  3. Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18(3):647–658.  https://doi.org/10.1007/s11367-012-0465-0 CrossRefGoogle Scholar
  4. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87(1):47–57.  https://doi.org/10.1016/j.apenergy.2009.08.024 CrossRefGoogle Scholar
  5. Clark CM, Lin Y, Bierwagen BG, Eaton LM, Langholtz MH, Morefield PE, Ridley CE, Vimmerstedt L, Peterson S, Bush BW (2013) Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program. Environ Res Lett 8(2):025016.  https://doi.org/10.1088/1748-9326/8/2/025016 CrossRefGoogle Scholar
  6. Daystar J, Gonzalez R, Reeb C, Venditti R, Treasure T, Abt R, Kelley S (2014) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the Southern US: Pine, eucalyptus, unmanaged hardwoods, forest residues, switchgrass, and sweet sorghum. Bioresources 9(1):393–444Google Scholar
  7. Falano T, Jeswani HK, Azapagic A (2014) Assessing the environmental sustainability of ethanol from integrated biorefineries. Biotechnol J 9(6):753–765.  https://doi.org/10.1002/biot.201300246 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fiorentino G, Ripa M, Mellino S, Fahd S, Ulgiati S (2014) Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J Clean Prod 66:174–187.  https://doi.org/10.1016/j.jclepro.2013.11.043 CrossRefGoogle Scholar
  9. Gabrielle B, Gagnaire N, Massad RS, Dufosse K, Bessou C (2014) Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling. Bioresour Technol 152:511–518.  https://doi.org/10.1016/j.biortech.2013.10.104 CrossRefPubMedGoogle Scholar
  10. Larsen RK, Jiwan N, Rompas A, Jenito J, Osbeck M, Tarigan A (2014) Towards ‘hybrid accountability’ in EU biofuels policy? Community grievances and competing water claims in the Central Kalimantan oil palm sector. Geoforum 54:295–305.  https://doi.org/10.1016/j.geoforum.2013.09.010 CrossRefGoogle Scholar
  11. Liptow C, Tillman AM (2012) A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16(3):420–435.  https://doi.org/10.1111/j.1530-9290.2011.00405.x CrossRefGoogle Scholar
  12. Panichelli L, Dauriat A, Gnansounou E (2009) Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14(2):144–159.  https://doi.org/10.1007/s11367-008-0050-8 CrossRefGoogle Scholar
  13. Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35(6):2361–2373.  https://doi.org/10.1016/j.biombioe.2010.12.011 CrossRefGoogle Scholar
  14. Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29(3):382–392.  https://doi.org/10.1002/ep.10461 CrossRefGoogle Scholar
  15. Silalertruksa T, Gheewala SH (2012) Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 43(1):306–314.  https://doi.org/10.1016/j.energy.2012.04.025 CrossRefGoogle Scholar
  16. Styles D, Jones MB (2008) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Pol 11(4):294–306.  https://doi.org/10.1016/j.envsci.2008.01.004 CrossRefGoogle Scholar
  17. Suwanmanee U, Varabuntoonvit V, Chaiwutthinan P, Tajan M, Mungcharoen T, Leejarkpai T (2013) Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess 18(2):401–417.  https://doi.org/10.1007/s11367-012-0479-7 CrossRefGoogle Scholar
  18. Tsao CC, Campbell JE, Mena-Carrasco M, Spak SN, Carmichael GR, Chen Y (2012) Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels. Environ Sci Technol 46(19):10835–10841.  https://doi.org/10.1021/es301851x CrossRefPubMedGoogle Scholar
  19. Turconi R, Tonini D, Nielsen CFB, Simonsen CG, Astrup T (2014) Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study. Appl Energy 132:66–73.  https://doi.org/10.1016/j.apenergy.2014.06.078 CrossRefGoogle Scholar
  20. van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina Part B. environmental and socio-economic impacts on a regional level. Renew Sust Energ Rev 13(8):1679–1709.  https://doi.org/10.1016/j.rser.2009.03.012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EcoSysAgroParisTech – INRAThiverval-GrignonFrance

Personalised recommendations