Advertisement

Review of the Impacts on Water of Land-Use Changes Induced by Non-food Biomass Production

  • Antonio Bispo
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 30)

Abstract

The expansion of crops grown solely for energy production results in land-use changes that in turn carry environmental consequences, notably for water resources. By means of a review of the literature, we analyzed the causal chain linking the expansion of perennial and annual crops destined for bioenergy (heat, electricity, fuel), to land-use changes (direct and indirect), and then to impacts on the quantity and quality of water. Fifty-four articles were identified. The majority of research since the end of the 2000s relates (in equal amounts) to first-generation or second-generation biofuels, although other forms of bioenergy, for example for heat or electricity, have also received some attention. The most frequently studied production areas are in North America (mainly in the USA), South America, and Europe, all regions where public policies have encouraged the development of biomass crops. Direct and indirect land-use changes considered relate primarily to the conversion of forests and grasslands into annual crops, and secondarily to the establishment of perennial crops to replace annual crops. The most frequently studied impacts are those relating to water consumption and eutrophication, usually at the regional level. Methodologies are rarely based on data collected in the field, but instead make use of biophysical modeling to generate projections, or adopt multi-criteria approaches of the life-cycle analysis type. Given the range of different climates, geographic zones, biomass types, and research methods involved, it is difficult to draw firm conclusions, but it would appear that second-generation biofuels have less of an impact on water resources than other forms of bioenergy.

Keywords

Biofuels Bioenergy Biomass Land-use change Water consumption Eutrophication 

Notes

Acknowledgments

This study was funded by the Agency for Energy and the Environment (ADEME) and the Ministry of Agriculture and Forestry (contract no. 12-60-C0004). It was made possible by the work of Sophie Le Perchec (INRA Rennes), who completed the literature search, as well as by the following researchers, who contributed to the detailed analysis of the articles: Laure Bamière (INRA Grignon), Aude Barbottin (INRA Grignon), Valentin Bellassen (INRA Dijon), Martial Bernoux (IRD Montpellier), Cécile Bessou (CIRAD Montpellier), Antonio Bispo (ADEME Angers), François Chiron (AgroParisTech, Orsay), Stéphane De Cara (INRA Grignon), Patrice Dumas (CIRAD Montpellier), Guillaume Décocq (Univ. Picardie Jules-Vernes, Amiens), Jean-François Dhôte (INRA Nancy), Monia El Akkari (INRA Paris), Sabrina Gaba (INRA Dijon), Benoît Gabrielle (AgroParisTech, Grignon), Philippe Lescoat (AgroParisTech, Paris), David Makowski (INRA Grignon), Olivier Réchauchère (INRA Paris), and Julie Wohlfahrt (INRA Mirecourt).

The author would also like to thank two anonymous readers for their insightful comments, which made it possible to improve the quality of this article.

Supplementary material

467539_1_En_5_MOESM1_ESM.xlsx (92 kb)
Bispo Eau SM OK (XLSX 91 kb)

References

  1. Afiff S, Wilkenson J, Carriquiry M, Jumbe C, Searchinger T (2013) Biofuels and food security. A report by the high level panel of experts on food security and nutrition of the committee on world food security. HLPE, Rome, p 132Google Scholar
  2. Babel MS, Shrestha B, Perret SR (2011) Hydrological impact of biofuel production: a case study of the Khlong Phlo Watershed in Thailand. Agric Water Manag 101(1):8–26.  https://doi.org/10.1016/j.agwat.2011.08.019 CrossRefGoogle Scholar
  3. Bamiere L, Bellassen V (this volume) Review of the impacts on greenhouse gas emissions of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  4. Berger M, van der Ent R, Eisner S, Bach V, Finkbeiner M (2014) Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48(8):4521–4528.  https://doi.org/10.1021/es404994t CrossRefPubMedGoogle Scholar
  5. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Chang Biol Bioenergy 3(4):299–312.  https://doi.org/10.1111/j.1757-1707.2010.01088.x CrossRefGoogle Scholar
  6. Bhardwaj AK, Zenone T, Jasrotia P, Robertson GP, Chen J, Hamilton SK (2011) Water and energy footprints of bioenergy crop production on marginal lands. Glob Chang Biol Bioenergy 3(3):208–222.  https://doi.org/10.1111/j.1757-1707.2010.01074.x CrossRefGoogle Scholar
  7. Costello C, Griffin WM, Landis AE, Matthews HS (2009) Impact of biofuel crop production on the formation of hypoxia in the Gulf of Mexico. Environ Sci Technol 43(20):7985–7991.  https://doi.org/10.1021/es9011433 CrossRefPubMedGoogle Scholar
  8. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10(2):69–74.  https://doi.org/10.1890/110003 CrossRefGoogle Scholar
  9. Delucchi MA (2010) Impacts of biofuels on climate change, water use, and land use. In: Ostfeld RS, Schlesinger WH (eds) Year in ecology and conservation biology 2010. Wiley-Blackwell, Malden, pp 28–45Google Scholar
  10. Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ (2009) The water footprint of biofuels: a drink or drive issue? Environ Sci Technol 43(9):3005–3010.  https://doi.org/10.1021/es802162x CrossRefPubMedGoogle Scholar
  11. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci U S A 105(11):4513–4518.  https://doi.org/10.1073/pnas.0708300105 CrossRefPubMedPubMedCentralGoogle Scholar
  12. El Akkari M, Sandoval M, Le Perchec S, Réchauchère O (this volume) Textual analysis of published research articles on the environmental impacts of land-use change. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  13. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238.  https://doi.org/10.1126/science.1152747 CrossRefGoogle Scholar
  14. Gabrielle B, Gagnaire N, Massad RS, Dufosse K, Bessou C (2014) Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling. Bioresour Technol 152:511–518.  https://doi.org/10.1016/j.biortech.2013.10.104 CrossRefGoogle Scholar
  15. Gerbens-Leenes PW, Hoekstra AY, van der Meer T (2009a) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68(4):1052–1060.  https://doi.org/10.1016/j.ecolecon.2008.07.013 CrossRefGoogle Scholar
  16. Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009b) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106(25):10219–10223.  https://doi.org/10.1073/pnas.0812619106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gerbens-Leenes PW, van Lienden AR, Hoekstra AY, van der Meer TH (2012) Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Glob Environ Chang Hum Pol Dimens 22(3):764–775.  https://doi.org/10.1016/j.gloenvcha.2012.04.001 CrossRefGoogle Scholar
  18. Hernandes TAD, Bufon VB, Seabra JEA (2014) Water footprint of biofuels in Brazil: assessing regional differences. Biofuels Bioprod Biorefin Biofpr 8(2):241–252.  https://doi.org/10.1002/bbb.1454 CrossRefGoogle Scholar
  19. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210.  https://doi.org/10.1073/pnas.0604600103 CrossRefPubMedPubMedCentralGoogle Scholar
  20. ISO (2014) ISO 14046. Environmental management – water footprint – principles, requirements and guidelines, 36 pGoogle Scholar
  21. LaBeau MB, Robertson DM, Mayer AS, Pijanowski BC, Saad DA (2014) Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes. Ecol Model 277:27–37.  https://doi.org/10.1016/j.ecolmodel.2014.01.016 CrossRefGoogle Scholar
  22. Motoshita M, Ono Y, Pfister S, Boulay A-M, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess 2014:1–12.  https://doi.org/10.1007/s11367-014-0811-5 CrossRefGoogle Scholar
  23. Ng TL, Eheart JW, Cai XM, Miguez F (2010) Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138–7144.  https://doi.org/10.1021/es9039677 CrossRefPubMedGoogle Scholar
  24. Nunez M, Civit B, Munoz P, Arena AP, Rieradevall J, Anton A (2010) Assessing potential desertification environmental impact in life cycle assessment. Int J Life Cycle Assess 15(1):67–78.  https://doi.org/10.1007/s11367-009-0126-0 CrossRefGoogle Scholar
  25. Pfister S, Boulay AM, Berger M, Hadjikakou M, Motoshita M, Hess T, Ridoutt B, Weinzettel J, Scherer L, Doll P, Manzardo A, Nunez M, Verones F, Humbert S, Harding K, Benini L, Oki T, Finkbeiner M, Henderson A (2017) Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) “a critique on the water-scarcity weighted water footprint in LCA”. Ecol Indic 72:352–359.  https://doi.org/10.1016/j.ecolind.2016.07.051. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Réchauchère O, El Akkari M, Le Perchec S, Makowski D, Gabrielle B, Bispo A (this volume) An innovative methodological framework for analyzing existing scientific research on land-use change and associated environmental impacts. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  27. Sarkar S, Miller SA (2014) Water quality impacts of converting intensively-managed agricultural lands to switchgrass. Biomass Bioenergy 68:32–43.  https://doi.org/10.1016/j.biombioe.2014.05.026 CrossRefGoogle Scholar
  28. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefGoogle Scholar
  29. Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38(11):6977–6988.  https://doi.org/10.1016/j.enpol.2010.06.066 CrossRefGoogle Scholar
  30. Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. Glob Change Biol Bioenergy 2(4):180–191.  https://doi.org/10.1111/j.1757-1707.2010.01053.x CrossRefGoogle Scholar
  31. Wu M, Demissie Y, Yan E (2012) Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi river basin. Biomass Bioenergy 41:44–56.  https://doi.org/10.1016/j.biombioe.2012.01.030 CrossRefGoogle Scholar

Annex: References in the Study Corpus Addressing Impacts on Water

  1. Alvarenga RAF, Dewulf J, De Meester S, Wathelet A, Villers J, Thommeret R, Hruska Z (2013) Life cycle assessment of bioethanol-based PVC. Part 2: consequential approach. Biofuels Bioprod Biorefin-Biofpr 7(4):396–405.  https://doi.org/10.1002/bbb.1398 CrossRefGoogle Scholar
  2. Babel MS, Shrestha B, Perret SR (2011) Hydrological impact of biofuel production: a case study of the Khlong Phlo Watershed in Thailand. Agric Water Manag 101(1):8–26.  https://doi.org/10.1016/j.agwat.2011.08.019 CrossRefGoogle Scholar
  3. Baral H, Keenan RJ, Fox JC, Stork NE, Kasel S (2013) Spatial assessment of ecosystem goods and services in complex production landscapes: a case study from South-Eastern Australia. Ecol Complex 13:35–45.  https://doi.org/10.1016/j.ecocom.2012.11.001 CrossRefGoogle Scholar
  4. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Change Biol Bioenergy 3(4):299–312.  https://doi.org/10.1111/j.1757-1707.2010.01088.x CrossRefGoogle Scholar
  5. Bhardwaj AK, Zenone T, Jasrotia P, Robertson GP, Chen J, Hamilton SK (2011) Water and energy footprints of bioenergy crop production on marginal lands. Glob Change Biol Bioenergy 3(3):208–222.  https://doi.org/10.1111/j.1757-1707.2010.01074.x CrossRefGoogle Scholar
  6. Brandao M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35(6):2323–2336.  https://doi.org/10.1016/j.biombioe.2009.10.019 CrossRefGoogle Scholar
  7. Calder IR, Nisbet T, Harrison JA (2009) An evaluation of the impacts of energy tree plantations on water resources in the United Kingdom under present and future UKCIP02 climate scenarios. Water Resour Res 45:W00A17.  https://doi.org/10.1029/2007wr006657 CrossRefGoogle Scholar
  8. Castanheira EG, Grisoli R, Freire F, Pecora V, Coelho ST (2014) Environmental sustainability of biodiesel in Brazil. Energy Policy 65:680–691.  https://doi.org/10.1016/j.enpol.2013.09.062 CrossRefGoogle Scholar
  9. Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18(3):647–658.  https://doi.org/10.1007/s11367-012-0465-0 CrossRefGoogle Scholar
  10. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87(1):47–57.  https://doi.org/10.1016/j.apenergy.2009.08.024 CrossRefGoogle Scholar
  11. Clark CM, Lin Y, Bierwagen BG, Eaton LM, Langholtz MH, Morefield PE, Ridley CE, Vimmerstedt L, Peterson S, Bush BW (2013) Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program. Environ Res Lett 8(2).  https://doi.org/10.1088/1748-9326/8/2/025016 CrossRefGoogle Scholar
  12. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10(2):69–74.  https://doi.org/10.1890/110003 CrossRefGoogle Scholar
  13. Daystar J, Gonzalez R, Reeb C, Venditti R, Treasure T, Abt R, Kelley S (2014) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the southern US: pine, eucalyptus, unmanaged hardwoods, forest residues, switchgrass, and sweet sorghum. Bioresources 9(1):393–444Google Scholar
  14. Death RG, Baillie B, Fransen P (2003) Effect of Pinus radiata logging on stream invertebrate communities in Hawke’s bay, New Zealand. N Z J Mar Freshw Res 37(3):507–520CrossRefGoogle Scholar
  15. Debnath D, Stoecker AL, Epplin FM (2014) Impact of environmental values on the breakeven price of switchgrass. Biomass Bioenergy 70:184–195.  https://doi.org/10.1016/j.biombioe.2014.08.021 CrossRefGoogle Scholar
  16. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci U S A 105(11):4513–4518.  https://doi.org/10.1073/pnas.0708300105 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Einheuser MD, Nejadhashemi AP, Woznicki SA (2013) Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass Bioenergy 58:198–209.  https://doi.org/10.1016/j.biombioe.2013.08.025 CrossRefGoogle Scholar
  18. Elbersen BS, Annevelink E, Klein-Lankhorst JR, Lesschen JP, Staritsky I, Langeveld JWA, Elbersen HW, Sanders JPM (2014) A framework with an integrated computer support tool to assess regional biomass delivery chains. Reg Environ Chang 14(3):967–980.  https://doi.org/10.1007/s10113-014-0584-1 CrossRefGoogle Scholar
  19. Falano T, Jeswani HK, Azapagic A (2014) Assessing the environmental sustainability of ethanol from integrated biorefineries. Biotechnol J 9(6):753–765.  https://doi.org/10.1002/biot.201300246 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fiorentino G, Ripa M, Mellino S, Fahd S, Ulgiati S (2014) Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J Clean Prod 66:174–187.  https://doi.org/10.1016/j.jclepro.2013.11.043 CrossRefGoogle Scholar
  21. Gabrielle B, Gagnaire N, Massad RS, Dufosse K, Bessou C (2014) Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling. Bioresour Technol 152:511–518.  https://doi.org/10.1016/j.biortech.2013.10.104 CrossRefGoogle Scholar
  22. Garcia CA, Manzini F (2012) Environmental and economic feasibility of sugarcane ethanol for the Mexican transport sector. Sol Energy 86(4):1063–1069.  https://doi.org/10.1016/j.solener.2011.09.015 CrossRefGoogle Scholar
  23. Garcia-Quijano JF, Deckmyn G, Moons E, Proost S, Ceulemans R, Muys B (2005) An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. For Ecol Manag 207(1–2):245–262.  https://doi.org/10.1016/j.foreco.2004.10.030 CrossRefGoogle Scholar
  24. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci U S A 108(11):4307–4312.  https://doi.org/10.1073/pnas.1008779108. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goldstein JC, Tarhule A, Brauer D (2014) Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation. Hydrol Res 45(1):99–114.  https://doi.org/10.2166/nh.2013.163 CrossRefGoogle Scholar
  26. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci Technol 43(15):6094–6100.  https://doi.org/10.1021/es900801u CrossRefPubMedGoogle Scholar
  27. Hallgren W, Schlosser CA, Monier E, Kicklighter D, Sokolov A, Melillo J (2013) Climate impacts of a large-scale biofuels expansion. Geophys Res Lett 40(8):1624–1630.  https://doi.org/10.1002/grl.50352 CrossRefGoogle Scholar
  28. Hamelin L, Naroznova I, Wenzel H (2014) Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl Energy 114:774–782.  https://doi.org/10.1016/j.apenergy.2013.09.033 CrossRefGoogle Scholar
  29. Havlik P, Schneider UA, Schmid E, Bottcher H, Fritz S, Skalsky R, Aoki K, De Cara S, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39(10):5690–5702.  https://doi.org/10.1016/j.enpol.2010.03.030 CrossRefGoogle Scholar
  30. Helin T, Holma A, Soimakallio S (2014) Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19(4):770–785.  https://doi.org/10.1007/s11367-014-0706-5 CrossRefGoogle Scholar
  31. Hernandes TAD, Bufon VB, Seabra JEA (2014) Water footprint of biofuels in Brazil: assessing regional differences. Biofuels Bioprod Biorefin Biofpr 8(2):241–252.  https://doi.org/10.1002/bbb.1454 CrossRefGoogle Scholar
  32. Iriarte A, Rieradevall J, Gabarrell X (2012) Transition towards a more environmentally sustainable biodiesel in South America: the case of Chile. Appl Energy 91(1):263–273.  https://doi.org/10.1016/j.apenergy.2011.09.024 CrossRefGoogle Scholar
  33. LaBeau MB, Robertson DM, Mayer AS, Pijanowski BC, Saad DA (2014) Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes. Ecol Model 277:27–37.  https://doi.org/10.1016/j.ecolmodel.2014.01.016 CrossRefGoogle Scholar
  34. Larsen RK, Jiwan N, Rompas A, Jenito J, Osbeck M, Tarigan A (2014) Towards ‘hybrid accountability’ in EU biofuels policy? Community grievances and competing water claims in the Central Kalimantan oil palm sector. Geoforum 54:295–305.  https://doi.org/10.1016/j.geoforum.2013.09.010 CrossRefGoogle Scholar
  35. Liptow C, Tillman AM (2012) A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16(3):420–435.  https://doi.org/10.1111/j.1530-9290.2011.00405.x CrossRefGoogle Scholar
  36. Munoz I, Flury K, Jungbluth N, Rigarlsford G, Milà i Canals L, King H (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19(1):109–119.  https://doi.org/10.1007/s11367-013-0613-1 CrossRefGoogle Scholar
  37. Nasterlack T, von Blottnitz H, Wynberg R (2014) Are biofuel concerns globally relevant? Prospects for a proposed pioneer bioethanol project in South Africa. Energy Sustain Dev 23:1–14.  https://doi.org/10.1016/j.esd.2014.06.005 CrossRefGoogle Scholar
  38. Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One 5(12):e14327.  https://doi.org/10.1371/journal.pone.0014327 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ng TL, Eheart JW, Cai XM, Miguez F (2010) Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138–7144.  https://doi.org/10.1021/es9039677 CrossRefPubMedGoogle Scholar
  40. Panichelli L, Dauriat A, Gnansounou E (2009) Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14(2):144–159.  https://doi.org/10.1007/s11367-008-0050-8 CrossRefGoogle Scholar
  41. Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35(6):2361–2373.  https://doi.org/10.1016/j.biombioe.2010.12.011 CrossRefGoogle Scholar
  42. Sarkar S, Miller SA (2014) Water quality impacts of converting intensively-managed agricultural lands to switchgrass. Biomass Bioenergy 68:32–43.  https://doi.org/10.1016/j.biombioe.2014.05.026 CrossRefGoogle Scholar
  43. Secchi S, Kurkalova L, Gassman PW, Hart C (2011) Land use change in a biofuels hotspot: the case of Iowa, USA. Biomass Bioenergy 35(6):2391–2400.  https://doi.org/10.1016/j.biombioe.2010.08.047 CrossRefGoogle Scholar
  44. Silalertruksa T, Gheewala SH (2012) Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 43(1):306–314.  https://doi.org/10.1016/j.energy.2012.04.025 CrossRefGoogle Scholar
  45. Styles D, Jones MB (2008) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Pol 11(4):294–306.  https://doi.org/10.1016/j.envsci.2008.01.004 CrossRefGoogle Scholar
  46. Tidaker P, Sundberg C, Oborn I, Katterer T, Bergkvist G (2014) Rotational grass/clover for biogas integrated with grain production – a life cycle perspective. Agric Syst 129:133–141.  https://doi.org/10.1016/j.agsy.2014.05.015 CrossRefGoogle Scholar
  47. Tonini D, Hamelin L, Wenzel H, Astrup T (2012) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46(24):13521–13530.  https://doi.org/10.1021/es3024435 CrossRefGoogle Scholar
  48. Turconi R, Tonini D, Nielsen CFB, Simonsen CG, Astrup T (2014) Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study. Appl Energy 132:66–73.  https://doi.org/10.1016/j.apenergy.2014.06.078 CrossRefGoogle Scholar
  49. van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina Part B. Environmental and socio-economic impacts on a regional level. Renew Sust Energ Rev 13(8):1679–1709.  https://doi.org/10.1016/j.rser.2009.03.012 CrossRefGoogle Scholar
  50. Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. Glob Change Biol Bioenergy 2(4):180–191.  https://doi.org/10.1111/j.1757-1707.2010.01053.x CrossRefGoogle Scholar
  51. Viglizzo EF, Frank FC, Carreno LV, Jobbagy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17(2):959–973.  https://doi.org/10.1111/j.1365-2486.2010.02293.x CrossRefGoogle Scholar
  52. Wu M, Demissie Y, Yan E (2012) Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi river basin. Biomass Bioenergy 41:44–56.  https://doi.org/10.1016/j.biombioe.2012.01.030 CrossRefGoogle Scholar
  53. Zhang X, Izaurralde RC, Manowitz D, West TO, Post WM, Thomson AM, Bandaruw VP, Nichols J, Williams JR (2010) An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. Glob Change Biol Bioenergy 2(5):258–277.  https://doi.org/10.1111/j.1757-1707.2010.01046.x CrossRefGoogle Scholar
  54. Ziolkowska JR (2013) Evaluating sustainability of biofuels feedstocks: a multi-objective framework for supporting decision making. Biomass Bioenergy 59:425–440.  https://doi.org/10.1016/j.biombioe.2013.09.008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Agriculture and ForestADEME (French Agency for Environment and Energy Management)Angers cedex 01France

Personalised recommendations