Advertisement

An Innovative Methodological Framework for Analyzing Existing Scientific Research on Land-Use Change and Associated Environmental Impacts

  • Olivier Réchauchère
  • Monia EL Akkari
  • Sophie Le PerchecEmail author
  • David Makowski
  • Benoît Gabrielle
  • Antonio Bispo
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 30)

Abstract

This article describes an original approach to surveying and analyzing the existing body of scientific research on (1) the effects of various forms of reorganization in agriculture, forestry, and spatial planning on land-use change (LUC) and (2) the impacts of that LUC on the environment. Our approach consisted of four principal steps: (i) identification of references using a bibliographic search process; (ii) description of the references’ key features (publication date, journal of publication, etc.); (iii) textual analysis of the articles and identification of thematic sub-groups; (iv) systematic examination of a subset of the corpus using an reading grid followed by an analysis of the results. Our findings show that the majority of publications relating to the environmental impacts of LUC were published after 2000, and amount to a corpus of more than 5700 articles. The scientific journals involved are diverse in nature, with some being general in focus and others more specialized and technical. A lexical analysis performed using the digital platform CorTexT, developed by IFRIS (Institute for Research and Innovation in Society, a research consortium based in the Paris region. http://ifris.org/), enabled us to identify several themes within this corpus, in terms of both the types of reorganizations considered and the types of impacts examined. A more detailed analysis was conducted on a subset of articles dealing with the production of non-food biomass. The results show that, within this sub-group, the environmental impacts most often studied are those relating to climate, soil, and water. Our approach demonstrates the utility of textual analysis as a partially automated method for identifying, in broad outline, the topics addressed within a large-scale corpus. As with a search by keywords, however, this type of textual analysis cannot guarantee that all the articles classed within a category genuinely address the corresponding topic. Among those articles assigned by CorTexT to the sub-group on non-food biomass (1785 articles), the majority proved not relevant to our chosen topic, and only 241 articles were ultimately selected. This selection phase could not be fully automated and required a close reading of titles, abstracts, and often main texts by human experts. The use of precise criteria for selection and a formal reading grid are helpful in limiting the risk of bias and ensuring a level of transparence in the analytical process. Implementation of such an approach is time-consumptive, however, and requires considerable human effort.

Keywords

Bibliometric Textual analysis Systematic review Land-use change Environmental impact 

References

  1. Berndes G, Ahlgren S, Borjesson P, Cowie AL (2013) Bioenergy and land use change-state of the art. Wiley Interdiscip Rev Energy Environ 2(3):282–303.  https://doi.org/10.1002/wene.41 CrossRefGoogle Scholar
  2. Broth A, Hoekman SK, Unnasch S (2013) A review of variability in indirect land use change assessment and modeling in biofuel policy. Environ Sci Pol 29:147–157.  https://doi.org/10.1016/j.envsci.2013.02.002 CrossRefGoogle Scholar
  3. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Ribeiro S, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Stechow Cv (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–332CrossRefGoogle Scholar
  4. IPCC (2006) Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). IPCC Guidelines for national greenhouse gas inventories – Volume 4 – Agriculture, forestry and other land use. The Intergovernmental panel on climate change. Institute for Global Environmental Strategies, HayamaGoogle Scholar
  5. Liska AJ, Perrin RK (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioproducts Biorefining-Biofpr 3(3):318–328.  https://doi.org/10.1002/bbb.153 CrossRefGoogle Scholar
  6. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefGoogle Scholar
  7. van Vliet J, Magliocca NR, Buchner B, Cook E, Benayas JMR, Ellis EC, Heinimann A, Keys E, Lee TM, Liu JG, Mertz O, Meyfroidt P, Moritz M, Poeplau C, Robinson BE, Seppelt R, Seto KC, Verburg PH (2016) Meta-studies in land use science: current coverage and prospects. Ambio 45(1):15–28.  https://doi.org/10.1007/s13280-015-0699-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Veldkamp A, Verburg PH (2004) Modelling land use change and environmental impact. J Environ Manag 72(1–2):1–3.  https://doi.org/10.1016/j.jenvman.2004.04.004 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olivier Réchauchère
    • 1
  • Monia EL Akkari
    • 2
  • Sophie Le Perchec
    • 3
    Email author
  • David Makowski
    • 4
  • Benoît Gabrielle
    • 2
  • Antonio Bispo
    • 5
  1. 1.DEPE (Unit for Collective Scientific Expertise, Foresight and Advanced Studies)INRAParisFrance
  2. 2.EcoSysAgroParisTech – INRAThiverval-GrignonFrance
  3. 3.DISTINRARennes CedexFrance
  4. 4.AgronomieINRAThiverval-GrignonFrance
  5. 5.Agriculture and ForestADEME (French Agency for Environment and Energy Management)Angers cedex 01France

Personalised recommendations