Advertisement

Putnam’s Theorem on the Complexity of Models

  • Warren Goldfarb
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 9)

Abstract

A streamlined proof of a theorem of Putnam’s: any satisfiable schema of predicate calculus has a model in which the predicates are interpreted as Boolean combinations of recursively enumerable relations. Related open problems are canvassed.

References

  1. Church, A. (1956). Introduction to mathematical logic. Princeton: Princeton University Press.Google Scholar
  2. Ebbs, G., & Goldfarb, W. (2018). First-order logical validity and the Hilbert-Bernays theorem. Philosophical Issues 28: Philosophy of Logic and Inference (forthcoming)CrossRefGoogle Scholar
  3. Enderton, H. (1972). A mathematical introduction to logic. New York: Academic Press.Google Scholar
  4. Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik, 37, 349–360. English translation in Gödel (1986), 102–123.MathSciNetCrossRefGoogle Scholar
  5. Gödel, K. (1986). In S. Feferman et al. (Eds.), Collected works, volume I. New York: Oxford University Press.Google Scholar
  6. Hanf, W. (1974). Nonrecursive tilings of the plane. I. Journal of Symbolic Logic, 39, 283–285.MathSciNetCrossRefGoogle Scholar
  7. Herbrand, J. (1931). Sur le probléme fondamental de la logique mathématique. Sprawozdania z posiedzeǹ Towarzystwa Naukowege Warszawskiego, Wydzial III, 23, 12–56. English translation in Herbrand (1971), 215–271.zbMATHGoogle Scholar
  8. Herbrand, J. (1971). In W. D. Goldfarb (Ed.), Logical writings. Dordrecht and Cambridge: Reidel and Harvard University Press.Google Scholar
  9. Hilbert, D., & Ackermann, W. (1928). Grundzüge der theoretischen Logik. Berlin: Springer.zbMATHGoogle Scholar
  10. Hilbert, D., & Bernays, P. (1939). Grundlagen der Mathematik (Vol. 2). Berlin: Springer.zbMATHGoogle Scholar
  11. Jockusch, C. G., Jr., & Soare, R. I. (1972). \(\Pi _{1}^0\) classes and degrees of theories. Transactions of the American Mathematical Society, 173, 33–56.MathSciNetzbMATHGoogle Scholar
  12. Kleene, S. C. (1952). Introduction to metamathematics. Amsterdam: Van Nostrand Reinhold.zbMATHGoogle Scholar
  13. Kreisel, G. (1953). Note on arithmetic models for consistent formulae of the preciate calculus II. In Proceedings of the XIth International Congress of Philosophy (pp. 39–49). Amsterdam: North-Holland.Google Scholar
  14. Mostowski, A. (1953). On a system of axioms which has no recursively enumerable model. Fundamenta Mathematicae, 40, 56–61.MathSciNetCrossRefGoogle Scholar
  15. Mostowski, A. (1955). A formula with no recursively enumerable model. Fundamenta Mathematicae, 43, 125–140.MathSciNetCrossRefGoogle Scholar
  16. Putnam, H. (1957). Arithmetic models for consistent formulae of quantification theory. Journal of Symbolic Logic, 22, 110–111.Google Scholar
  17. Putnam, H. (1965). Trial and error predicates and the solution to a problem of Mostowski. Journal of Symbolic Logic, 30, 49–57.MathSciNetCrossRefGoogle Scholar
  18. Shoenfield, J. R. (1959). On degrees of unsolvability. Annals of Mathematics, 69, 644–653.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhilosophyHarvard UniversityCambridgeUSA

Personalised recommendations