Advertisement

Putnam’s Constructivization Argument

  • Akihiro Kanamori
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 9)

Abstract

We revisit Putnam’s constructivization argument from his Models and Reality, part of his model-theoretic argument against metaphysical realism. We set out how it was initially put, the commentary and criticisms, and how it can be specifically seen and cast, respecting its underlying logic and in light of Putnam’s contributions to mathematical logic.

Keywords

Constructibility \(V= L\) Model-theoretic argument Metaphysical realism 

References

  1. Barwise, J. (1971). Infinitary methods in the model theory of set theory. In R. O. Gandy & C. M. E. Yates (Eds.), Studies in logic and the foundations of mathematics (Vol. 61, pp. 53–66). Logic Colloquium ’69. Amsterdam.CrossRefGoogle Scholar
  2. Barwise, J. (1975). Admissible sets and structures. an approach to definability theory. Berlin: Springer.Google Scholar
  3. Bays, T. (2001). On Putnam and his models. The Journal of Philosophy, 98, 331–350.MathSciNetCrossRefGoogle Scholar
  4. Bays, T. (2007). More on Putnam’s models: A reply to Bellotti. Erkenntnis, 67, 119–135.MathSciNetCrossRefGoogle Scholar
  5. Bellotti, L. (2005). Putnam and constructibility. Erkenntnis, 62, 395–409.MathSciNetCrossRefGoogle Scholar
  6. Boolos, G. S., & Putnam, H. (1968). Degrees of unsolvability of constructible sets of integers. The Journal of Symbolic Logic, 33, 497–513.MathSciNetCrossRefGoogle Scholar
  7. Button, T. (2011). The metamathematics of Putnam’s model-theoretic arguments. Erkenntnis, 74, 321–349.MathSciNetCrossRefGoogle Scholar
  8. Cohen, P. J. (1963). A minimal model for set theory. Bulletin of the American Mathematical Society, 69, 537–540.MathSciNetCrossRefGoogle Scholar
  9. Dümont, J. (1999). Putnam’s model-theoretic argument(s). A detailed reconstruction. Journal for General Philosophy of Science, 30, 341–364.MathSciNetCrossRefGoogle Scholar
  10. Gaifman, H. (2004). Non-standard models in a broader perspective. In A. Enayat & R. Kossak (Eds.), Non-standard models of arithmetic and set theory (Vol. 361, pp. 1–22). Contemporary mathematics. Providence: American Mathematical Society.Google Scholar
  11. Jensen, R. B. (1972). The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4, 229–308.MathSciNetCrossRefGoogle Scholar
  12. Levin, M. (1997). Putnam on reference and constructible sets. British Journal for the Philosophy of Science, 48, 55–67.MathSciNetCrossRefGoogle Scholar
  13. Putnam, H. (1963). A note on constructible sets of integers. Notre Dame Journal of Formal Logic, 4, 270–273.MathSciNetCrossRefGoogle Scholar
  14. Putnam, H. (1980). Models and reality. The Journal of Symbolic Logic, 45, 464–482. Delivered as a presidential address to the Association of Symbolic Logic in 1977.Google Scholar
  15. Shapiro, S. (1985). Second-order languages and mathematical practice. The Journal of Symbolic Logic, 50, 714–742.MathSciNetCrossRefGoogle Scholar
  16. Shoenfield, J. R. (1961). The problem of predicativity. In Y. Bar-Hillel, E. I. J. Poznanski, & A. Robinson (Eds.), Essays on the foundations of mathematics (pp. 132–139). Jerusalem: Magnes Press.Google Scholar
  17. Velleman, D. (1998). MR1439801, Review of Levin, Putnam on reference and constructible sets. Mathematical Reviews 98c, 1364.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Boston UniversityBostonUSA

Personalised recommendations