Advertisement

Abstraction, Axiomatization and Rigor: Pasch and Hilbert

  • Michael Detlefsen
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 9)

Abstract

In the late nineteenth century, Pasch made a well known statement concerning the conditions of attaining rigor in geometrical proof. The criterion he offered called not only for the elimination of appeals to geometrical figures, but of appeals to meanings of geometrical terms more generally. Not long after Pasch, Hilbert (and others) proposed an alternative standard of rigor. My aim in this paper is to clarify the relationship between Pasch’s and Hilbert’s standards of rigor. There are, I believe, fundamental differences between them.

Keywords

Rigor Proof Pasch Hilbert Lambert Freudenthal premisory surreption Abstraction from meaning Semantic abstraction Abstraction condition Axiomatic method Axiomatizaton Formalization 

AMS Categories

00A30; 03A05 

References

  1. Berkeley, G. (1734). The analyst; or, a discourse addressed to an infidel mathematician. Wherein it is examined whether the object, principles, and inferences of the modern analysis are more distinctly conceived, or more evidently deduced, than religious mysteries and points of faith, Printed for J. Jonson, London.Google Scholar
  2. Bour, P.-E., Rebuschi, M., & Rollet, L. (Eds.). (2010). Construction. London: College Publications.Google Scholar
  3. Brouwer, L. E. J. (1923). Über die Bedeutung des Satzes vom ausgescholessenen Dritten in der Mathematik, insbesondere in der Funktiontheorie. Journal für die reine und angewandte Mathematik, 154, 1–7. English translation in van Heijenoort (1967), pp. 334–345. Page references are to this translation.Google Scholar
  4. Brouwer, L. E. J. (1928). Intuitionistische Betrachtungen über den Formalismus. Koninklijke Akademie van wetenschappen de Amsterdam, Proceedings of the Section of Sciences, 31, 324–329. English translation with introduction in van Heijenoort (1967), pp. 490–492. Page references are to this translation.Google Scholar
  5. Cellucci, C., Grosholz, E., & Ippoliti, E. (Eds.). (2011). Logic and knowledge. Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  6. Detlefsen, M. (2005). Formalism. In Shapiro (2005), pp. 236–317.CrossRefGoogle Scholar
  7. Detlefsen, M. (2010). Rigor, Re-proof and Bolzano’s Critical Program. In Bour et al. (2010), pp. 171–184.Google Scholar
  8. Detlefsen, M. (2011). Dedekind against intuition: Rigor, scope and the motives of his logicism. In Cellucci et al. (2011), pp. 273–288.Google Scholar
  9. Engel, F., & Stäckel, P. (1895). Die Theorie der Parallelinien von Euklid bis auf Gauss. Leipzig: Teubner.Google Scholar
  10. Frege, G. (1906). Über die Grundlagen der Geometrie, Jahresbericht der Deutschen Mathematiker-Vereinigung15, 293–309, 377–403, 423–430. English translation in Frege (1971).Google Scholar
  11. Frege, G. (1971). Gottlob Frege: On the foundations of geometry and formal theories of arithmetic, trans. and ed., with an introduction, by Eike-Henner W. Kluge. New Haven: Yale University Press.Google Scholar
  12. Freudenthal, H. (1962). The main trends in the foundations of geometry in the 19th century. In Suppes et al. (1962), pp. 613–621.Google Scholar
  13. Hilbert, D. (1899). Grundlagen der Geometrie, Published in Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen. Leipzig: Teubner.Google Scholar
  14. Hilbert, D. (1900). Über den Zahlbegriff. Jahresbericht der Deutschen Mathematiker-Vereinigung, 8, 180–194.Google Scholar
  15. Hilbert, D. (1922). Neubegründung der Mathematik. Erste Mitteilung. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 1, 157–77. Page references are to the reprinting in Hilbert (1935), Vol. III.MathSciNetCrossRefGoogle Scholar
  16. Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190.MathSciNetCrossRefGoogle Scholar
  17. Hilbert, D. (1928). Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6, 65–85. Reprinted in Hamburger Einzelschriften, 5, pp. 1–21. Leipzig: Teubner. Page references are to the latter.Google Scholar
  18. Hilbert, D. (1930). Naturerkennen und Logik. Die Naturwissenschaften, 18, 959–963. Printed in Hilbert (1935), Vol. III. Page references are to this printing.Google Scholar
  19. Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik (Vol. I). Berlin: Springer. Page references are to Hilbert and Bernays (1968), the second edition of this text.Google Scholar
  20. Hilbert, D. (1932–1935). Gesammelte Abhandlungen, three volumes. Bronx: Chelsea Pub. Co.CrossRefGoogle Scholar
  21. Hilbert, D., & Bernays, P. (1968). Grundlagen der Mathematik (Vol. I, 2nd ed.). Berlin: Springer.Google Scholar
  22. Huntington, E. V. (1911). The fundamental propositions of algebra. Long Island University, Brooklyn: Galois Institute Press.Google Scholar
  23. Lambert, J. H. (1786). Theory der Parallelinien I. Leipziger Magazin für reine und angewandte Mathematik, 1(2), 137–164. Reprinted in Engel and Stäckel (1995), pp. 152–176.Google Scholar
  24. Lambert, J. H. (1786). Theory der Parallelinien II. Leipziger Magazin für reine und angewandte Mathematik, 1(3), 325–358. Reprinted in Engel and Stäckel (1995), pp. 176–207.Google Scholar
  25. Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner.Google Scholar
  26. Pasch, M. (1918). Die Forderung der Entscheidbarkeit. Jahresbericht der Deutschen Mathematiker-Vereinigung, 27, 228–232.zbMATHGoogle Scholar
  27. Pollard, S. (2010). ‘As if’ reasoning in Vaihinger and Pasch. Erkenntnis, 73, 83–95.MathSciNetCrossRefGoogle Scholar
  28. Poncelet, J.-V. (1822). Traité des propriétés projectives de figures. Paris: Bachelier.Google Scholar
  29. Putnam, H. (1984). Proof and experience. Proceedings of the American Philosophical Society, 128, 31–34.Google Scholar
  30. Russell, B. (1902). The teaching of Euclid. The Mathematical Gazette, 2(33), 165–167.CrossRefGoogle Scholar
  31. Shapiro, S. (Ed.). (2005). Oxford handbook of the philosophy of mathematics and logic. Oxford: Oxford University Press.Google Scholar
  32. Smith, C., & Bryant, S. (1901). Euclid’s elements of geometry: Books I–IV, VI and XI. London: Macmillan.Google Scholar
  33. Suppes, P., Nagel, E., & Tarski, A. (Eds.) (1962). Logic, methodology, and philosophy of science: Proceedings of the 1960 International Congress. Stanford: Stanford U Press.Google Scholar
  34. Todhunter, I. (1869). The elements of Euclid for the use of schools and colleges. London: Macmillan.Google Scholar
  35. van Heijenoort, J. (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931. Cambridge: Harvard University Press.Google Scholar
  36. Weyl, H. (1928). Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6, 86–88. Reprinted in Hamburger Einzelschriften, 5, pp. 22–24, Teubner, Leipzig, 1928. English translation in van Heijenoort (1967).Google Scholar
  37. Weyl, H. (1944). David Hilbert and his mathematical work. Bulletin of the American Mathematical Society, 50, 612–654.MathSciNetCrossRefGoogle Scholar
  38. Whitehead, A. N. (1906). The axioms of projective geometry. Cambridge: University Press.Google Scholar
  39. Young, J. W., Denton, W. W., & Mitchell, U. G. (1911). Lectures on fundamental concepts of algebra and geometry. New York: Macmillan Co.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations