SimScience 2017: Simulation Science pp 112-127 | Cite as

MC/MD Coupling for Scale Bridging Simulations of Solute Segregation in Solids: An Application Study

  • Hariprasath Ganesan
  • Christoph Begau
  • Godehard SutmannEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)


A parallel hybrid Monte Carlo/Molecular Dynamics coupled framework has been developed to overcome the time scale limitation in simulations of segregation of interstitial atoms in solids. Simulations were performed using the proposed coupling approach to demonstrate its potential to model carbon segregation in ferritic steels with a single dislocation. Many simulations were carried out for different background carbon concentrations. This paper is a first step towards understanding the effect of segregation of interstitial atoms in solids and its influence on dislocation mobility in external fields. To this end, we carried out MD simulations, where shear forces were applied to mechanically drive screw dislocation on configurations with segregated carbon atoms. The results are compared with a reference system containing homogeneously distributed carbon atoms where the influence of segregated carbon on dislocation mobility could be observed. Simulation results gave qualitative evidence that the local concentration of interstitial solutes like carbon provides a significant pinning effect for the dislocation.


Solute segregation Parallelization Cottrell atmospheres 



The authors gratefully acknowledge the funding from Deutsche Forschungsgemeinschaft (DFG) - BE 5360/1-1.


  1. 1.
    Cottrell, A.H., Bilby, B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. London Sect. A 62(1), 49 (1949)CrossRefGoogle Scholar
  2. 2.
    Wilde, J., Cerezo, A., Smith, G.D.W.: Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scripta Mater. 43(1), 39–48 (2000)CrossRefGoogle Scholar
  3. 3.
    Zhao, J., De, A., Cooman, B.D.: A model for the cottrell atmosphere formation during aging of ultra low carbon bake hardening steels. ISIJ Int. 40(7), 725–730 (2000)CrossRefGoogle Scholar
  4. 4.
    Zhao, J., De, A., De Cooman, B.: Kinetics of cottrell atmosphere formation during strain aging of ultra-low carbon steels. Mater. Lett. 44(6), 374–378 (2000)CrossRefGoogle Scholar
  5. 5.
    Waterschoot, T., De Cooman, B., De, A., Vandeputte, S.: Static strain aging phenomena in cold-rolled dual-phase steels. Metall. Mater. Trans. A 34(3), 781–791 (2003)CrossRefGoogle Scholar
  6. 6.
    Berbenni, S., Favier, V., Lemoine, X., Berveiller, M.: A micromechanical approach to model the bake hardening effect for low carbon steels. Scripta Mater. 51(4), 303–308 (2004)CrossRefGoogle Scholar
  7. 7.
    Khater, H., Monnet, G., Terentyev, D., Serra, A.: Dislocation glide in fe-carbon solid solution: from atomistic to continuum level description. Int. J. Plast. 62, 34–49 (2014)CrossRefGoogle Scholar
  8. 8.
    Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., Zepeda-Ruiz, L.: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 85(18), 184,203 (2012)CrossRefGoogle Scholar
  9. 9.
    Veiga, R.G.A., Perez, M., Becquart, C.S., Domain, C.: Atomistic modeling of carbon Cottrell atmospheres in bcc iron. J. Phys. Condens. Matter 25(2), 025,401 (2012)CrossRefGoogle Scholar
  10. 10.
    Veiga, R.G.A., Goldenstein, H., Perez, M., Becquart, C.S.: Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe-C alloys. Scripta Mater. 108, 19–22 (2015)CrossRefGoogle Scholar
  11. 11.
    Frenkel, D: Lecture notes on: free energy calculations. In: Meyer, M., Pontikis, V. (eds.) Computer Simulation in Materials Science, p. 85. Kluwer Academic Publishers, Amsterdam (1991)Google Scholar
  12. 12.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)CrossRefGoogle Scholar
  13. 13.
    Crooks, G.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.0 (2012).
  15. 15.
    Sutmann, G., Ganesan, H., Begau, C.: Cluster formation in stochastic disk systems. In: AIP Conference Proceedings, vol. 1863, p. 560089 (2017).
  16. 16.
    Stadler, J., Mikulla, R., Trebin, H.-R.: IMD: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8(05), 1131–1140 (1997)CrossRefGoogle Scholar
  17. 17.
    Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443 (1984)CrossRefGoogle Scholar
  18. 18.
    Becquart, C.S.: Atomistic modeling of an Fe system with a small concentration of C. Comput. Mater. Sci. 40(1), 119–129 (2007)CrossRefGoogle Scholar
  19. 19.
    Veiga, R.G.A., Becquart, C.S., Perez, M.: Comments on Atomistic modeling of an Fe system with a small concentration of C. Comput. Mater. Sci. 82, 118–121 (2014)CrossRefGoogle Scholar
  20. 20.
    Cochardt, A.W., Schoek, G., Wiedersich, H.: Interaction between dislocations and interstitial atoms in body-centered cubic metals. Acta Metall. 3(6), 533–537 (1955)CrossRefGoogle Scholar
  21. 21.
    Koester, A., Ma, A., Hartmaier, A.: Atomistically informed crystal plasticity model for body-centered cubic iron. Acta Mater. 60(9), 3894–3901 (2012)CrossRefGoogle Scholar
  22. 22.
    Chockalingam, K., Janisch, R., Hartmaier, A.: Coupled atomistic-continuum study of the effects of C atoms at \(\alpha \)-Fe dislocation cores. Modell. Simul. Mater. Sci. Eng. 22(7), 075007 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hariprasath Ganesan
    • 1
  • Christoph Begau
    • 1
  • Godehard Sutmann
    • 1
    • 2
    Email author
  1. 1.Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)Ruhr-University BochumBochumGermany
  2. 2.Jülich Supercomputing CentreForschungszentrum JülichJülichGermany

Personalised recommendations