Advertisement

Interactive Multiobjective Robust Optimization with NIMBUS

  • Yue Zhou-Kangas
  • Kaisa Miettinen
  • Karthik Sindhya
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)

Abstract

In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty in the problems. We separate the solution process into two stages: the pre-decision making stage and the decision making stage. We consider the decision maker’s preferences in the nominal case, i.e., with the most typical or undisturbed values of the uncertain parameters. At the same time, the decision maker is informed about the objective function values in the worst case to support her/him to make an informed decision. To help the decision maker to understand the behaviors of the solutions, we visually present the objective function values. As a result, the decision maker can find a preferred balance between robustness and objective function values under the nominal case.

Keywords

Multiple criteria decision making Uncertainty Robustness Interactive methods Robust Pareto optimality 

References

  1. 1.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bokrantz, R., Fredriksson, A.: Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization. Eur. J. Oper. Res. 262(2), 682–692 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88908-3CrossRefMATHGoogle Scholar
  4. 4.
    Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)CrossRefGoogle Scholar
  5. 5.
    Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239(1), 17–31 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Geoffrion, A.M., Dyer, J.S., Feinberg, A.: An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Manage. Sci. 19(4), 357–368 (1972)CrossRefGoogle Scholar
  7. 7.
    Hassanzadeh, F., Nemati, H., Sun, M.: Robust optimization for multiobjective programming problems with imprecise information. Procedia Comput. Sci. 17, 357–364 (2013)CrossRefGoogle Scholar
  8. 8.
    Hassanzadeh, F., Nemati, H., Sun, M.: Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection. Eur. J. Oper. Res. 238(1), 41–53 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectr. 38(1), 235–271 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuhn, K., Raith, A., Schmidt, M., Schöbel, A.: Bi-objective robust optimisation. Eur. J. Oper. Res. 252(2), 418–431 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  12. 12.
    Miettinen, K.: Survey of methods to visualize alternatives in multiple criteria decision making problems. OR Spectr. 36(1), 3–37 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. Eur. J. Oper. Res. 170(3), 909–922 (2006)CrossRefGoogle Scholar
  14. 14.
    Miettinen, K., Mustajoki, J., Stewart, T.J.: Interactive multiobjective optimization with NIMBUS for decision making under uncertainty. OR Spectr. 36(1), 39–56 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sabioni, C.L., de Oliveira Ribeiro, M.F., de Vasconcelos, J.A.: Decision maker iterative-based framework for multiobjective robust optimization. Neuro Comput. 242, 113–130 (2017)Google Scholar
  16. 16.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, London (1985)MATHGoogle Scholar
  17. 17.
    Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26(3), 326–344 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Steuer, R.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, New York (1986)MATHGoogle Scholar
  19. 19.
    Wiecek, M.M., Dranichak, G.M.: Robust multiobjective optimization for decision making under uncertainty and conflict. In: Gupta, A., Capponi, A., Smith, J.C., Greenberg, H.J. (eds.) Optimization Challenges in Complex, Networked and Risky Systems, pp. 84–114 (2016)Google Scholar
  20. 20.
    Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr. 8(2), 73–87 (1986)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang, J.B.: Minimax reference point approach and its application for multiobjective optimization. Eur. J. Oper. Res. 126(3), 541–556 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yue Zhou-Kangas
    • 1
  • Kaisa Miettinen
    • 1
  • Karthik Sindhya
    • 1
  1. 1.University of Jyvaskyla, Faculty of Information TechnologyUniversity of JyvaskylaFinland

Personalised recommendations