Advertisement

Passenger-Induced Delay Propagation: Agent-Based Simulation of Passengers in Rail Networks

  • Sebastian Albert
  • Philipp Kraus
  • Jörg P. Müller
  • Anita Schöbel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)

Abstract

Current work on delay management in railway networks has – to the best of our knowledge – largely ignored the impact of passengers’ behavior on train delays. This paper describes ongoing work aiming to explore this topic. We propose a hybrid agent-based architecture combining a macroscopic railway network simulation with a microscopic simulation of passengers in stations based on the LightJason agent platform. Using an initial instantiation of the architecture, we model a simple platform changing scenario and explore how departure delays of trains are influenced by delays of incoming trains, and by numbers and heterogeneity of passengers. Our results support the hypothesis that passengers’ behavior in fact has a significant effect on delays of departing trains, i.e., that passengers’ behavior in stations must not be neglected. We recommend to include these effects in up-to-date models of delay management.

References

  1. 1.
    Ahlbrecht, T., Dix, J., Fiekas, N., Köster, M., Kraus, P., Müller, J.P.: An architecture for scalable simulation of systems of cognitive agents. Int. J. Agent Oriented Softw. Eng. (IJAOSE) 5, 232–265 (2016)CrossRefGoogle Scholar
  2. 2.
    Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired by Jason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59294-7_6CrossRefGoogle Scholar
  3. 3.
    Bazzan, A.L.C., Klügl, F.: Agent-based modeling and simulation. AI Mag. 33(3), 29–40 (2013)Google Scholar
  4. 4.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason, vol. 8. Wiley, Chichester (2007)Google Scholar
  5. 5.
    Camus, B., Galtier, V., Caujolle, M., Chevrier, V., Vaubourg, J., Ciarletta, L., Bourjot, C.: Hybrid co-simulation of FMUs using DEV&DESS in MECSYCO. In: Proceedings of the Symposium on Theory of Modeling & Simulation, pp. 8:1–8:8. Society for Computer Simulation International, San Diego (2016)Google Scholar
  6. 6.
    Codd, E.F.: Cellular Automata. Academic Press Inc., Orlando (1968)MATHGoogle Scholar
  7. 7.
    Conte, C., Schöbel, A.: Identifying dependencies among delays. In: Proceedings of IAROR 2007 (2007). ISBN 978-90-78271-02-4Google Scholar
  8. 8.
    Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A.: Delay management with rerouting of passengers. Transp. Sci. 46(1), 74–89 (2012)CrossRefGoogle Scholar
  9. 9.
    Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A.: Delay propagation and delay management in transportation network. In: Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., Schlechte, T. (eds.) Handbook of Optimization in the Railway Industry. International Series in Operations Research & Management Science, vol. 268, pp. 285–317. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72153-8_13
  10. 10.
    Dollevoet, T., Schmidt, M., Schöbel, A.: Delay management with re-routing of passengers. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009. Dagstuhl Seminar Proceedings (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2143
  11. 11.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of the Sixth National Conference on Artificial Intelligence, AAAI 1987, vol. 2, pp. 677–682. AAAI Press (1987)Google Scholar
  12. 12.
    Grether, D., Nagel, K.: Extensible software design of a multi-agent transport simulation. Procedia Comput. Sci. 19, 380–388 (2013). http://www.sciencedirect.com/science/article/pii/S1877050913006601
  13. 13.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  14. 14.
    Johora, F.T., Kraus, P., Müller, J.P.: Dynamic path planning and movement control in pedestrian simulation. In: van Dam, K.H., Thompson, J. (eds.) Preproceedings of 2nd International Workshop on Agent-Based Modelling Of Urban Systems (ABMUS 2017), Sao Paulo, Brazil, May 2017, accepted for publication. arXiv:1709.08235
  15. 15.
    Kirchoff, F.: Modelling delay propagation in railway networks. Oper. Res. Proc. 2013, 237–242 (2014)Google Scholar
  16. 16.
    Kirchoff, F.: Verspätungsfortpflanzung in Bahnnetzen, Modellierung und Berechnung mit Verteilungsfamilien. Ph.D. thesis, University of Technology Claustal, Germany (2015)Google Scholar
  17. 17.
    Li, W., Zhu, W.: A dynamic simulation model of passenger flow distribution on schedule-based rail transit networks with train delays. J. Traffic Transp. Eng. 3(4), 364–373 (2016). http://www.sciencedirect.com/science/article/pii/S2095756415305833
  18. 18.
    Liang, Y.D., Barsky, B.A.: A new concept and method for line clipping. ACM Trans. Graph. (TOG) 3(1), 1–22 (1984)CrossRefGoogle Scholar
  19. 19.
    Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schöbel, A.: Source estimation for propagation processes on complex networks with an application to delays in public transportation systems. J. R. Stat. Soc. Ser. C 66, 521–536 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pachl, J.: Railway Operations and Control, 2nd edn. VTD Rail Publishing, Mountlake Terrace (2014)Google Scholar
  21. 21.
    Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands, 22–25 January 1996, Proceedings, pp. 42–55 (1996). https://doi.org/10.1007/BFb0031845
  22. 22.
    Rückert, R., Lemnian, M., Blendinger, C., Rechner, S., Müller-Hannemann, M.: Panda: a software tool for improved train dispatching with focus on passenger flows. Public Transp. 9(1–2), 307–324 (2017)CrossRefGoogle Scholar
  23. 23.
    Schmidt, M., Schöbel, A.: The complexity of integrating routing decisions in public transportation models. Networks 65(3), 228–243 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schöbel, A.: Capacity constraints in delay management. Public Transp. 1(2), 135–154 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shalaby, A.S., King, D., Srikukenthiran, S.S.: Using simulation to analyze crowd congestion and mitigation measures at Canadian subway interchanges: case of Bloor-Yonge station, Toronto, Ontario. Transp. Res. Rec. J. Transp. Res. Board 2417, 27–36 (2014)Google Scholar
  26. 26.
    Srikukenthiran, S.S., Shalaby, A.S.: Enabling large-scale transit microsimulation for disruption response support using the Nexus platform: proof-of-concept case study of the Greater Toronto area transit network. Public Transp. 9(1–2), 411–435 (2017)CrossRefGoogle Scholar
  27. 27.
    Wales, J., Marinov, M.: Analysis of delays and delay mitigation on a metropolitan rail network using event based simulation. Simul. Model. Pract. Theory 52, 52–77 (2015). http://www.sciencedirect.com/science/article/pii/S1569190X1500012X
  28. 28.
    Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2009)Google Scholar
  29. 29.
    Zhang, Q., Han, B., Li, D.: Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations. Transp. Res. Part C Emerg. Technol. 16(5), 635–649 (2008). http://www.sciencedirect.com/science/article/pii/S0968090X07000927

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sebastian Albert
    • 1
  • Philipp Kraus
    • 2
  • Jörg P. Müller
    • 2
  • Anita Schöbel
    • 1
  1. 1.Georg-August-Universität GöttingenGöttingenGermany
  2. 2.Technische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations