Advertisement

Investigation of Optical Properties of Otoliths with Optical Trapping

  • Itia Amandine Favre-Bulle
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Investigating the functioning of biological system often ask to, not only image the different processes and elements involved, but also manipulate them to find information that could not be found visually, such as forces of motion, strength of bondings, elasticity, viscosity to cite a few.

References

  1. 1.
    I.A. Favre-Bulle, A.B. Stilgoe, H. Rubinsztein-Dunlop, E.K. Scott, Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Under review in Nature Communications (2017)Google Scholar
  2. 2.
    M.M. Bever, D.M. Fekete, Atlas of the developing inner ear in zebrafish. Dev. Dyn. 223(4), 536 (2002)CrossRefGoogle Scholar
  3. 3.
    K.E. Cullen, The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 35(3), 185 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Inoue, M. Tanimoto, Y. Oda, The role of ear stone size in hair cell acoustic sensory transduction. Sci. Rep. 3 (2013)Google Scholar
  5. 5.
    B.B. Riley, S.J. Moorman, Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J. Neurobiol. 43(4), 329 (2000)CrossRefGoogle Scholar
  6. 6.
    J.C. Beck, E. Gilland, D.W. Tank, R. Baker, Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J. Neurophysiol. 92(6), 3546 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Bonnet, P. Retornaz, J. Halloy, A. Gribovskiy, F. Mondada, Development of a mobile robot to study the collective behavior of zebrafish, in 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 437–442 (2012)Google Scholar
  8. 8.
    I.H. Bianco, L.H. Ma, D. Schoppik, D.N. Robson, M.B. Orger, J.C. Beck, J.M. Li, A.F. Schier, F. Engert, R. Baker, The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Curr. Biol. 22(14), 1285 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Mo, F. Chen, A. Nechiporuk, T. Nicolson, Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci. 11(1), 1 (2010)CrossRefGoogle Scholar
  10. 10.
    E.C. Steven, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    W.L. Bragg, The refractive indices of calcite and aragonite. Proc. R. Soc. Lond. A. 105(732), 370 (1924). Series A, Containing Papers of a Mathematical and Physical CharacterGoogle Scholar
  12. 12.
    A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    A. Farre, F. Marsa, M. Montes-Usategui, Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt. Express 20(11), 12270 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre Gaussian laser modes. Phys. Rev. A 45(11), 8185 (1992). PRAGoogle Scholar
  15. 15.
    M. Bohmer, J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20(3), 554 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations