Advertisement

Introduction

  • Itia Amandine Favre-Bulle
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

When aiming to understand the brain, its complex network and constitution, one has to develop tools to visualise and control the information flowing through it on a cellular level. Methods for studying the brain are flourishing through the development of many new experimental methods that are able to give answers to long-standing problems.

References

  1. 1.
    T.N. Seyfried, G.H. Glaser, A review of mouse mutants as genetic models of epilepsy. Epilepsia 26(2), 143 (1985)CrossRefGoogle Scholar
  2. 2.
    A.P. Arnold, X. Chen, What does the four core genotypes mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30(1), 1 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Rein, M. Zockler, M.T. Mader, C. Grubel, M. Heisenberg, The drosophila standard brain. Curr. Biol. 12(3), 227 (2002)CrossRefGoogle Scholar
  4. 4.
    M.B. Feany, W.W. Bender, A drosophila model of parkinson’s disease. Nature 404(6776), 394 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Rankin, C.D.O. Beck, C.M. Chiba, Caenorhabditis elegans: a new model system for the study of learning and memory. Behav. Brain Res. 37(1), 89 (1990)CrossRefGoogle Scholar
  6. 6.
    W. Norton, L. Bally-Cuif, Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci. 11(1), 90 (2010)CrossRefGoogle Scholar
  7. 7.
    A.V. Kalueff, A.M. Stewart, R. Gerlai, Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35(2), 63 (2014)CrossRefGoogle Scholar
  8. 8.
    P. McGrath, C.-Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov. Today 13(9–10), 394 (2008)CrossRefGoogle Scholar
  9. 9.
    C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253 (1995)CrossRefGoogle Scholar
  10. 10.
    J.S.S. Easter, G.N. Nicola, The development of vision in the zebrafish (danio rerio). Dev. Biol. 180(2), 646 (1996)CrossRefGoogle Scholar
  11. 11.
    J. Chhetri, G. Jacobson, N. Gueven, Zebrafish-on the move towards ophthalmological research. Eye 28(4), 367 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Gestri, B.A. Link, S.C. Neuhauss, The visual system of zebrafish and its use to model human ocular diseases. Dev. Neurobiol. 72(3), 302 (2012)CrossRefGoogle Scholar
  13. 13.
    A.A. Bhandiwad, D.G. Zeddies, D.W. Raible, E.W. Rubel, J.A. Sisneros, Auditory sensitivity of larval zebrafish (danio rerio) measured using a behavioral prepulse inhibition assay. J. Exp. Biol. 216(Pt 18), 3504 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Yao, A.A. DeSmidt, M. Tekin, X. Liu, Z. Lu, Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13(2), 79 (2016)CrossRefGoogle Scholar
  15. 15.
    T.T. Whitfield, Zebrafish as a model for hearing and deafness. J. Neurobiol. 53(2), 157 (2002)CrossRefGoogle Scholar
  16. 16.
    A.M. Palanca, S.L. Lee, L.E. Yee, C. Joe-Wong, L.A. Trinh, E. Hiroyasu, M. Husain, S.E. Fraser, M. Pellegrini, A. Sagasti, New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev. Neurobiol. 73(2), 152 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Haesemeyer, D.N. Robson, J.M. Li, A.F. Schier, F. Engert, The structure and timescales of heat perception in larval zebrafish. Cell Syst. 1(5), 338 (2015)CrossRefGoogle Scholar
  18. 18.
    A.W. Thompson, G.C. Vanwalleghem, L.A. Heap, E.K. Scott, Functional profiles of visual-, auditory-, and water flow-responsive neurons in the zebrafish tectum. Curr. Biol. 26(6), 743 (2016)CrossRefGoogle Scholar
  19. 19.
    W.J. Stewart, G.S. Cardenas, M.J. McHenry, Zebrafish larvae evade predators by sensing water flow. J. Exp. Biol. 216(3), 388 (2013)CrossRefGoogle Scholar
  20. 20.
    M.J. McHenry, K.E. Feitl, J.A. Strother, W.J. Van Trump, Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol. Lett. 5(4), 477 (2009)CrossRefGoogle Scholar
  21. 21.
    B.B. Riley, S.J. Moorman, Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J. Neurobiol. 43(4), 329 (2000)CrossRefGoogle Scholar
  22. 22.
    S.J. Moorman, R. Cordova, S.A. Davies, A critical period for functional vestibular development in zebrafish. Dev. Dyn. 223(2), 285 (2002)CrossRefGoogle Scholar
  23. 23.
    M.R. Banghart, M. Volgraf, D. Trauner, Engineering light-gated ion channels. Biochemistry 45(51), 15129 (2006)CrossRefGoogle Scholar
  24. 24.
    J.J. Chambers, R.H. Kramer, Light-activated ion channels for remote control of neural activity. Methods Cell Biol. 90, 217 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Nat. Acad. Sci. 100(24), 13940 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    F. Zhang, L.-P. Wang, E.S. Boyden, K. Deisseroth, Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3(10), 785 (2006)CrossRefGoogle Scholar
  27. 27.
    A.B. Arrenberg, F. Del Bene, H. Baier, Optical control of zebrafish behavior with halorhodopsin. Proc. Nat. Acad. Sci. 106(42), 17968 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    B. Schobert, J.K. Lanyi, Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257(17), 10306 (1982)Google Scholar
  29. 29.
    O. Yizhar, L.E. Fenno, T.J. Davidson, M. Mogri, K. Deisseroth, Optogenetics in neural systems. Neuron 71(1), 9Google Scholar
  30. 30.
    K. Deisseroth, Optogenetics. Nat. Methods 8(1), 26 (2011)CrossRefGoogle Scholar
  31. 31.
    L. Fenno, O. Yizhar, K. Deisseroth, The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389 (2011)CrossRefGoogle Scholar
  32. 32.
    R.T. LaLumiere, A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul. 4(1), 1 (2011)CrossRefGoogle Scholar
  33. 33.
    A.N. Timo, L.Y.L. Vincent, B.S. Alexander, K. Gregor, M.B. Agata, R.H. Norman, R.-D. Halina, Optical tweezers computational toolbox. J. Opt. A Pure Appl. Opt. 9(8), S196 (2007)CrossRefGoogle Scholar
  34. 34.
    C. Linton, Electromagnetic scattering by particles and particle groups: An introduction. Contemp. Phys. 56(3), 402 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    C. Sollner, M. Burghammer, E. Busch-Nentwich, J. Berger, H. Schwarz, C. Riekel, T. Nicolson, Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302(5643), 282 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    W. Mo, F. Chen, A. Nechiporuk, T. Nicolson, Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci. 11(1), 1 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235(4795), 1517 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    J.S. Bennett, L.J. Gibson, R.M. Kelly, E. Brousse, B. Baudisch, D. Preece, T.A. Nieminen, T. Nicholson, N.R. Heckenberg, H. Rubinsztein-Dunlop, Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci. Rep. 3, 1759 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Ashkin, J.M. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150), 769 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Pang, R. Gordon, Optical trapping of a single protein. Nano Lett. 12(1), 402 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    C. Rusu, R. van’t Oever, M.J. de Boer, H.V. Jansen, J.W. Berenschot, M.L. Bennink, J.S. Kanger, B.G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, A. van den Berg, Direct integration of micromachined pipettes in a flow channel for single dna molecule study by optical tweezers. J. Microelectromech. Syst. 10(2), 238 (2001)CrossRefGoogle Scholar
  43. 43.
    S.M. Block, B.J. Schnapp, L.S.B. Goldstein, Bead movement by single kinesin molecules studied with optical tweezers. Nature 348(6299), 348 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    H. Kojima, E. Muto, H. Higuchi, T. Yanagida, Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73(4), 2012 (1997)CrossRefGoogle Scholar
  45. 45.
    T.R. Thiele, J.C. Donovan, H. Baier, Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83(3), 679 (2014)CrossRefGoogle Scholar
  46. 46.
    J.C. Liao, M. Haehnel, Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J. Neurophys. 107(10), 2615 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations