Methods of Criteria Importance Theory and Their Software Implementation

  • Andrey Pavlovich NelyubinEmail author
  • Vladislav Vladimirovich Podinovski
  • Mikhail Andreevich Potapov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 247)


The article presents a general approach to the solution of the multicriteria choice problem by methods of the Criteria importance theory. The overview of methods of vector estimates comparison by preference using various types of information about the preferences of the decision-maker is given. These methods are implemented in the computer system DASS.


Multicriteria analysis Criteria importance theory Decision support system Graphical-analytical methods 


  1. 1.
    Podinovski, V.V.: Introduction into the Theory of Criteria Importance in Multi-Criteria Problems of Decision Making. Fizmatlit, Moscow (2007) (in Russian)Google Scholar
  2. 2.
    Podinovski, V.V.: Criteria importance coefficients in decision making problems. Ordinal importance coefficients (in Russian). Autom. Remote Control 10, 130–141 (1978)Google Scholar
  3. 3.
    Podinovski, V.V., Potapov, M.A.: Criteria importance in multicriteria decision making problems: theory, methods, soft and applications (in Russian). Otkrytoe obrazovanie. No 2, 55–61 (2012)Google Scholar
  4. 4.
    Podinovski, V.V.: Analysis of multicriteria choice problems by methods of the theory of criteria importance, based on computer systems of decision making support. J. Comput. Syst. Sci. Int. 47(2), 221–225 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nelyubin, A.P., Podinovski, V.V.: Multicriteria choice based on criteria importance methods with uncertain preference information. Comput. Math. Math. Phys. 57(9), 1475–1483 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Podinovski, V.V.: The quantitative importance of criteria for MCDA. J. Multi-Criteria Decis. Anal. 11, 1–15 (2002)CrossRefGoogle Scholar
  7. 7.
    Fishburn, P.C.: Decision and Value Theory. Wiley, New York (1964)zbMATHGoogle Scholar
  8. 8.
    Podinovski, V.V.: On the use of importance information in MCDA problems with criteria measured on the first ordered metric scale. J. Multi-Criteria Decis. Anal. 15, 163–174 (2009)CrossRefGoogle Scholar
  9. 9.
    Nelyubin, A.P., Podinovski, V.V.: Analytical decision rules using importance-ordered criteria with a scale of the first ordinal metric. Autom. Remote Control 73(5), 831–840 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Podinovski V.V.: Interval information on criteria importance in multi-criteria decision making analysis. Nauchno-Tech. Inf. Ser. 6(2), 15–18 (2007)Google Scholar
  11. 11.
    Nelyubin, A.P., Podinovski, V.V.: Optimization methods in multi-criteria decision making analysis with interval information on the importance of criteria and values of scale gradations. Autom. Doc. Math. Linguist. 45(4), 202–210 (2011)CrossRefGoogle Scholar
  12. 12.
    Nelyubin, A.P., Podinovski, V.V.: Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences. Comput. Math. Math. Phys. 51(5), 751–761 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrey Pavlovich Nelyubin
    • 1
    Email author
  • Vladislav Vladimirovich Podinovski
    • 2
  • Mikhail Andreevich Potapov
    • 3
  1. 1.Mechanical Engineering ResearchInstitute of the RASMoscowRussia
  2. 2.Higher School of EconomicsNational Research UniversityMoscowRussia
  3. 3.Institute of Computer Aided Design of the RASMoscowRussia

Personalised recommendations