Impacts of Nitrogen Deposition on Forest Ecosystem Services and Biodiversity

  • Wim de VriesEmail author
  • Lena Schulte-Uebbing


Nitrogen deposition has a beneficial or adverse effect on the provision of several forest ecosystem services, depending on the level of nitrogen deposition and the service considered. Biodiversity and water quality regulation are much more sensitive to increasing nitrogen deposition levels than wood production and carbon sequestration. Beyond a certain threshold, however, effects of nitrogen deposition on forest ecosystem services are always negative. This threshold is currently exceeded in much of Central Europe, eastern US and China. Estimates of the contribution of nitrogen to global forest carbon sequestration indicate that elevated nitrogen deposition is responsible for approximately 10–20% of the global terrestrial carbon sink. In areas with persisting high levels of nitrogen deposition forests can become saturated with nitrogen, which represents a risk to the permanence of this service in those areas.


Nitrogen deposition Forest growth Carbon sequestration Ecosystem services Soil C:N ratios Stoichiometric scaling Nitrogen addition studies 


  1. 1.
    Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry. 1991;13:87–115.CrossRefGoogle Scholar
  2. 2.
    Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl. 2010;20:30–59.CrossRefGoogle Scholar
  3. 3.
    LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 2008;89:371–9.CrossRefGoogle Scholar
  4. 4.
    Thomas RQ, Canham CD, Weathers KC, Goodale CL. Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci. 2010;3:13–7.CrossRefGoogle Scholar
  5. 5.
    Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz A, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–93.CrossRefGoogle Scholar
  6. 6.
    Nabuurs G-J, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, et al. First signs of carbon sink saturation in European forest biomass. Nat Clim Chang. 2013;3:792–6.CrossRefGoogle Scholar
  7. 7.
    Grime JP. Control of species density in herbaceous vegetation. J Environ Manage. 1973;1:151–67.Google Scholar
  8. 8.
    Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, et al. Nitrogen saturation in temperate forest ecosystems. Bioscience. 1998;48:921–34.CrossRefGoogle Scholar
  9. 9.
    Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut. 2010;158:2940–5.CrossRefGoogle Scholar
  10. 10.
    Roth T, Kohli L, Rihm B, Achermann B. Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agric Ecosyst Environ. 2013;178:121–6.CrossRefGoogle Scholar
  11. 11.
    Dise NB, Rothwell JJ, Gauci V, van der Salm C, de Vries W. Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Sci Total Environ. 2009;407:1798–808.CrossRefGoogle Scholar
  12. 12.
    De Vries W, Du E, Butterbach-Bahl K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Environ Sustain. 2014;9(10):90–104.Google Scholar
  13. 13.
    Braun S, Thomas VFD, Quiring R, Flückiger W. Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut. 2010;158:2043–52.CrossRefGoogle Scholar
  14. 14.
    Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ. 2011;140:234–44.CrossRefGoogle Scholar
  15. 15.
    Janssens IA, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci. 2010;3:315–22.CrossRefGoogle Scholar
  16. 16.
    Sutton MA, Simpson D, Levy PE, Smith RI Reis S, Van Oijen M, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Chang Biol. 2008;14:2057–63.CrossRefGoogle Scholar
  17. 17.
    De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage. 2009;258:1814–23.Google Scholar
  18. 18.
    Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol. 2015;21:3169–80.CrossRefGoogle Scholar
  19. 19.
    Laubhann D, Sterba H, Reinds GJ, De Vries W. The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model. For Ecol Manage. 2009;258:1751–61.CrossRefGoogle Scholar
  20. 20.
    Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Garcia Fernandez P, et al. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manage. 2009;258:1735–50.CrossRefGoogle Scholar
  21. 21.
    Fleischer K, Rebel KT, van der Molen MK, Erisman JW, Wassen MJ, van Loon EE, et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochem Cycles. 2013;27:187–99.CrossRefGoogle Scholar
  22. 22.
    Schulte-Uebbing L, de Vries W. Does nitrogen-induced forest carbon sequestration offset agricultural N2O emissions? – a meta-analysis of nitrogen addition effects on carbon sequestration in tree woody biomass. In: Paper presented at 7th International Nitrogen Initiative Conference Melbourne 2016. 2016.Google Scholar
  23. 23.
    Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles. 2007;21:GB4018.CrossRefGoogle Scholar
  24. 24.
    Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences. 2012;9:3547–69.CrossRefGoogle Scholar
  25. 25.
    Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global carbon budget 2015. Earth Syst Sci Data. 2015;7:349–96.CrossRefGoogle Scholar
  26. 26.
    Yuan ZY, Chen HYH. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang. 2015;5:465–9.CrossRefGoogle Scholar
  27. 27.
    De Vries W, Posch M, Reinds GJ, Bonten LTC, Mol-Dijkstra JP, Wieger Wamelink GW, et al. Integrated assessment of impacts of atmospheric deposition and climate change on forest ecosystem services in Europe. In: de Vries W, Hettelingh J-P, Posch M, editors. Critical loads and dynamic risk assessments: nitrogen, acidity and metals in terrestrial and aquatic ecosystems. Dordrecht: Springer; 2015. p. 589–612.Google Scholar
  28. 28.
    Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles. 2006;20:GB4003.CrossRefGoogle Scholar
  29. 29.
    Hansen MC, Stehman SV, Potapov PV. Quantification of global gross forest cover loss. Proc Natl Acad Sci U S A. 2010;107:8650–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental Systems Analysis GroupWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations