Advertisement

Assessment of Soil Functions Affected by Soil Management

  • Hans-Jörg VogelEmail author
  • Ute Wollschläger
  • Katharina Helming
  • Uwe Heinrich
  • Matthias Willms
  • Martin Wiesmeier
  • David Russell
  • Uwe Franko
Chapter

Abstract

Soil plays a central role in the functioning of terrestrial systems. This role is at risk given the enormous loss of soil through desertification and degradation amounting to 12 million hectares per year [1].

Keywords

Soil functions Carbon sequestration Soil modelling Soil management Agriculture Soil ecosystem services 

Notes

Acknowledgements

The authors are affiliated to the BonaRes Centre for Soil Research funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding measure “Soil as a Sustainable Resource for the Bioeconomy—BonaRes”, project “BonaRes (Module B): BonaRes Centre for Soil Research” (grant 031A608).

References

  1. 1.
    ELD Initiative. Report for policy and decision makers: reaping economic and environmental benefits from sustainable land management. 2015. Available from www.eld-initiative.org. Accessed 7 Oct 2017.Google Scholar
  2. 2.
    Wilson EO. The little things that run the world (the importance and conservation of invertebrates). Conserv Biol. 1987;1(4):344–6.CrossRefGoogle Scholar
  3. 3.
    European Environment Agency. Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions – Thematic Strategy for Soil Protection. [SEC(2006)620] [SEC(2006)1165]. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN. Accessed 7 Oct 2017.
  4. 4.
    Blum WEH. Soil protection concept of the Council of Europe and Integrated Soil Research. In: Eijsackers HJP, Hamers T, editors. Integrated soil and sediment research: a basis for proper protection. Dordrecht: Springer; 1993. p. 37–47.CrossRefGoogle Scholar
  5. 5.
    Baveye PC, Baveye J, Gowdy J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front Environ Sci. 2016;4:41.CrossRefGoogle Scholar
  6. 6.
    Spangenberg JH, Görg C, Truong DT, Tekken V, Bustamante JV, Settele J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int J Biodivers Sci Ecosyst Serv Manag. 2014;10(1):40–53.CrossRefGoogle Scholar
  7. 7.
    Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science. 2004;304:1634–7.CrossRefGoogle Scholar
  8. 8.
    Lima ACR, Brussaard L, Totola MR, Hoogmoed WB, de Goede RGM. A functional evaluation of three indicator sets for assessing soil quality. Appl Soil Ecol. 2013;64:194–200.CrossRefGoogle Scholar
  9. 9.
    Dominati E, Mackay A, Green S, Patterson M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: a case study of pastoral agriculture in New Zealand. Ecol Econ. 2014;100:119–29.CrossRefGoogle Scholar
  10. 10.
    Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Pérès G, et al. Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Curr Opin Environ Sustain. 2012;4(5):529–38.CrossRefGoogle Scholar
  11. 11.
    Smit E, Bakker PAHM, Bergmans H, Bloem J, Griffiths BS, Rutgers M, et al. General surveillance of the soil ecosystem: an approach to monitoring unexpected adverse effects of GMO’S. Ecol Indic. 2012;14:107–13.CrossRefGoogle Scholar
  12. 12.
    Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003;54(4):655–70.CrossRefGoogle Scholar
  13. 13.
    Schloter M, Dilly O, Munch JC. Indicators for evaluating soil quality. Agric Ecosyst Environ. 2003;98:255–62.CrossRefGoogle Scholar
  14. 14.
    Wall DH, Bardgett RD, Kelly E. Biodiversity in the dark. Nat Geosci. 2010;3(5):297–8.CrossRefGoogle Scholar
  15. 15.
    Brussaard L, de Ruiter PC, Brown GG. Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ. 2007;121:233–44.CrossRefGoogle Scholar
  16. 16.
    Briones MJI. Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci. 2014;2(7):1–22.Google Scholar
  17. 17.
    Stone D, Ritz K, Griffiths BG, Orgiazzi A, Creamer RE. Selection of biological indicators appropriate for European soil monitoring. Appl Soil Ecol. 2016;97:12–22.CrossRefGoogle Scholar
  18. 18.
    Barrios E. Soil biota, ecosystem services and land productivity. Ecol Econ. 2007;64:269–85.CrossRefGoogle Scholar
  19. 19.
    Ruiz S, Schymanski S, Or D. Soil penetration rates by earthworms and plant roots-mechanical and energetic considerations. EGU Gen Assem Conf Abstr. 2016;18:8035.Google Scholar
  20. 20.
    Minasny B, Whelan BM, Triantafilis J, McBratney AB. Pedometrics research in the Vadose Zone—review and perspectives. Vadose Zone J. 2013;12:vzj2012.0141.  https://doi.org/10.2136/vzj2012.0141.CrossRefGoogle Scholar
  21. 21.
    Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D, Roose T, et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. 2016;15:57.  https://doi.org/10.2136/vzj2015.09.0131.CrossRefGoogle Scholar
  22. 22.
    Franko U, Kolbe H, Thiel E, Ließ E. Multi-site validation of a soil organic matter model for arable fields based on generally available input data. Geoderma. 2011;166:119–34.CrossRefGoogle Scholar
  23. 23.
    Franko U, Spiegel H. Modeling soil organic carbon dynamics in an Austrian long-term tillage field experiment. Soil Tillage Res. 2016;156:83–90.CrossRefGoogle Scholar
  24. 24.
    BGR, Federal Office for Geology and Raw Materials. Soil and land use map of the Federal Republic of Germany 1:1.000.000 (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR Nutzungsdifferenzierte Bodenübersichtskarte 1:1.000.000 (BÜK 1000 N), Version 2.3.1). Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe; 2007.Google Scholar
  25. 25.
    DWD. WebWerdis – weather request and distribution system: annual mean temperature (1981–2010) and annual mean precipitation (1981–2010). 2012.Google Scholar
  26. 26.
    Franko U, Oelschlägel B. Einfluß von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Arch Agron Soil Sci. 1995;39:155–63.CrossRefGoogle Scholar
  27. 27.
    Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang. 2014;4:678–83.CrossRefGoogle Scholar
  28. 28.
    Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P. Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ. 2014;187:87–105.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hans-Jörg Vogel
    • 1
    Email author
  • Ute Wollschläger
    • 1
  • Katharina Helming
    • 2
  • Uwe Heinrich
    • 2
  • Matthias Willms
    • 3
  • Martin Wiesmeier
    • 4
  • David Russell
    • 5
  • Uwe Franko
    • 1
  1. 1.Department of Soil System ScienceHelmholtz Centre for Environmental Research–UFZHalleGermany
  2. 2.Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  3. 3.Institute of Socio-EconomicsLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  4. 4.Department of Ecology, Center of Life ScienceTechnical University of MunichFreisingGermany
  5. 5.Senckenberg Society for Nature ResearchFrankfurtGermany

Personalised recommendations