Advertisement

Nonproliferative Diabetic Retinopathy

  • Francesco BandelloEmail author
  • Rosangela Lattanzio
  • Emanuela Aragona
  • Alessandro Marchese
  • Giuseppe Querques
  • Ilaria Zucchiatti
Chapter

Abstract

Nonproliferative diabetic retinopathy (NPDR) is classically defined by the presence of early intraretinal microvascular findings and is currently classified into different stages of severity, according to international proposed classifications. Recently, retinal imaging using optical coherence tomography angiography and ultrawide-field angiography has widely improved the morphological analysis of NPDR.

The Early Treatment Diabetic Retinopathy Study (ETDRS) Research Group showed that very severe NPDR has an increased risk of progression to proliferative diabetic retinopathy. Nevertheless, data from well-conducted studies demonstrated that preventive treatments, such as a tight control of blood glucose level, blood pressure, and lipid serum level, could significantly delay the onset and slow the progression of NPDR. The effectiveness of the annual screening programs, including dilated fundus examinations or the new promising telemedicine strategies, has been clearly documented. Additionally, secondary interventions could also be useful in limiting the visual loss. In the past the ETDRS suggested that early scatter photocoagulation is not indicated for eyes with mild to moderate NPDR while is indicated in case of very severe NPDR or early PDR, especially in older patients with type 2 diabetes. With the advent of ultrawide-field angiography, the detection of the ischemic areas in the far periphery has been increased and led to the development of targeted retinal photocoagulation. This technique is useful in treating selectively non-perfusion areas, while sparing the still perfused ones. In addition, intravitreal injections are nowadays a powerful tool to control NPDR, especially in cases complicated by diabetic macular edema.

Keywords

Placebo Marketing Metformin Statin Ultrawide-field angiography Optical coherence tomography angiography Ranibizumab Dexamethasone Retinal photocoagulation 

References

  1. 1.
    Speiser P, Gittelsohn AM, Patz A. Studies on diabetic retinopathy: III. Influence of diabetes on intramural pericytes. Arch Ophthalmol. 1968;80:332–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Eiken HM, Diéguez-Hurtado R, Schmidt I, et al. Pericytes regulate VEGF induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8(1):1574.CrossRefGoogle Scholar
  3. 3.
    Stefánsson E, Chan YK, Bek T, et al. Laws of physics help explain capillary non-perfusion in diabetic retinopathy. Eye. 2018;32(2):210–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamada M, Ohkoshi K, Inagaki K, et al. Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images. Jpn J Ophthalmol. 2018;62(2):168–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Parravano M, De Geronimo D, Scarinci F, et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol. 2017;179:90–6.  https://doi.org/10.1016/j.ajo.2017.04.021. Epub 2017 May 5.CrossRefPubMedGoogle Scholar
  7. 7.
    Ribeiro L, Bandello F, Tejerina AN, et al.; Evicr Net Study Group. Characterization of retinal disease progression in a 1-year longitudinal study of eyes with mild nonproliferative retinopathy in diabetes type 2. Invest Ophthalmol Vis Sci. 2015;56(9):5698–5705.Google Scholar
  8. 8.
    Green WR. Retina. In: Spencer W, editor. Ophthalmic pathology. Philadelphia: W.B. Saunders; 1996.Google Scholar
  9. 9.
    Zhitao X, Xinpeng Z, Lei G, et al. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomed Eng Online. 2017;16(1):122.CrossRefGoogle Scholar
  10. 10.
    Pierro L, Rabiolo A. Emerging issues for optical coherence tomography. Dev Ophthalmol. 2017;60:28–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Chew EY, Ferris FL III. Retina. In: Ryan SJ, Schachat AP, editors. Medical retina, vol. 2. St. Louis: Mosby; 2001.Google Scholar
  12. 12.
    Ashton N. Pathological and ultrastructural aspect of the cotton-wool spots. Proc R Soc Med. 1969;62:1271–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Laren HW. Diabetic retinopathy. Acta Ophthalmol. 1960;60:1–89.Google Scholar
  14. 14.
    Hersh PS, Green WR, Thoms JJV. Tractional venous loops in diabetic retinopathy. Am J Ophthalmol. 1981;92:661–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Ernest JT, Goldstick TK, Engerman RL. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest Ophthalmol Vis Sci. 1983;24:985–9.PubMedGoogle Scholar
  16. 16.
    Muraoka K, Shimizu K. Intraretinal neovascularization in diabetic retinopathy. Ophthalmology. 1984;91:1440–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes. 1989;38:1203–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Early Treatment Diabetic Retinopathy Study Research Group. Early treatment diabetic retinopathy study. Ophthalmology. 1991;98:739–840.CrossRefGoogle Scholar
  19. 19.
    Lee CS, Lee AY, Baughman D, et al.; UK DR EMR Users Group. The United Kingdom Diabetic Retinopathy Electronic Medical Record Users Group: Report 3: Baseline retinopathy and clinical features predict progression of diabetic retinopathy. Am J Ophthalmol. 2017;180:64–71.Google Scholar
  20. 20.
    Manivannan A, Plskova J, Farrow A, et al. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140(3):525–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Rabiolo A, Parravano M, Querques L, et al. Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol. 2017;27(11):803–7.CrossRefGoogle Scholar
  22. 22.
    Oliver SC, Schwartz SD. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol. 2010;25(1-2):27–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Diabetic Retinopathy Study Research Group. A modification of the Airlie House classification of diabetic retinopathy. Report 7. Invest Ophthalmol Vis Sci. 1981;21:210–26.Google Scholar
  24. 24.
    Davis MD, Norton EWD, Myers FL. The Airlie classification of diabetic retinopathy. In: Goldberg MF, Fine SL, editors. Symposium on the treatment of diabetic retinopathy (Public Health Service publication no. 1890). Washington, DC: US Government Printing Office; 1969.Google Scholar
  25. 25.
    Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology. 1991;98:766–85.CrossRefGoogle Scholar
  26. 26.
    Fukuda M. Clinical arrangement of classification of diabetic retinopathy. Tohoku J Exp Med. 1983;141:331–5.PubMedCrossRefGoogle Scholar
  27. 27.
    National Health and Medical Research Council. Management of diabetic retinopathy: clinical practice guidelines. Canberra: National Health and Medical Research Council; 1997.Google Scholar
  28. 28.
    Verdaguer TJ. Screening para retinopatia en latin America. Rev Soc Brasil Retina Vitreo. 2001;4:14–5.Google Scholar
  29. 29.
    Wilkinson CP, Ferris FL III, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Klein RE, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. IX. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1989;107:237–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Klein RE, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Ophthalmol. 1989;107:244–9.PubMedCrossRefGoogle Scholar
  32. 32.
    American Academy of Ophthalmology Retina/Vitreous Panel. Preferred practice pattern® guidelines. Diabetic retinopathy. San Francisco: American Academy of Ophthalmology; 2017.Google Scholar
  33. 33.
    Wessel MM, Aaker GD, Parlitsis G. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Falavarjani KG, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol. 2016;28(2):57–60.CrossRefGoogle Scholar
  35. 35.
    Peripheral Diabetic Retinopathy (DR) lesions on Ultrawide-field Fundus images and risk of DR worsening over time. 2018. Available at http://drcrnet.jaeb.org. Accessed on Mar 2018.
  36. 36.
    Lubow M, Makley TA Jr. Pseudopapilledema of juvenile diabetes mellitus. Arch Ophthalmol. 1971;85:417–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Appen RE, Chandra SR, Klein R, et al. Diabetic papillopathy. Am J Ophthalmol. 1980;90:203–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Pavan PR, Aiello LM, Wafai MZ, et al. Optic disc edema in juvenile-onset diabetes. Arch Ophthalmol. 1980;98:2193–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Barr CC, Glaser JS, Blankership G. Acute disc swelling in juvenile diabetes. Clinical profile and natural history of 12 cases. Arch Ophthalmol. 1980;98:2185–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Wallace IR, Mulholland DA, Lindsay JR. Diabetic papillopathy: an uncommon cause of bilateral optic disc swelling. QJM. 2012;105(6):583–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Hayreh SS, Zahoruk RM. Anterior ischemic optic neuropathy. VI. In juvenile diabetics. Ophthalmologica. 1981;182:13–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Heller SR, Tattersall RB. Optic disc swelling in young diabetic patients: a diagnostic dilemma. Diabet Med. 1987;4:260–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Almog Y, Goldstein M. Visual outcome in eyes with asymptomatic optic disc edema. J Neuroophthalmol. 2003;23:204–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Mallika PS, Aziz S, Asok T, et al. Severe diabetic papillopathy mimicking non-arteritic anterior ischemic optic neuropathy (NAION) in a young patient. Med J Malaysia. 2012;67(2):228–30.PubMedGoogle Scholar
  45. 45.
    Bonnet M, Bensoussan B, Grange JD, et al. Acute panendothelial retinal leakage in juvenile diabetes. J Fr Ophtalmol. 1982;5:303–16.PubMedGoogle Scholar
  46. 46.
    Brancato R, Menchini U, Bandello F. Diabetic papillopathy: fluorangiographic aspects. Metab Pediatr Syst Ophthalmol. 1986;9:57–61.Google Scholar
  47. 47.
    Bandello F, Menchini F. Diabetic papillopathy as a risk factor for progression of diabetic retinopathy. Retina. 2004;24:183–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol. 1967;51:115–23.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Al-Haddad CE, Jurdi FA, Bashshur ZF. Intravitreal triamcinolone acetonide for the management of diabetic papillopathy. Am J Ophthalmol. 2004;137:1151–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Mansour AM, El-Dairi MA, Shahab MA. Periocular corticosteroids in diabetic papillopathy. Eye. 2005;19:45–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Ornek K, Ogurel T. Intravitreal bevacizumab for diabetic papillopathy. J Ocul Pharmacol Ther. 2010;26:217–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Willerslev A, Munch IC, Larsen M. Resolution of diabetic papillopathy after a single intravitreal injection of ranibizumab. Acta Ophthalmol. 2012;90(5):e407–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Al-Hinai AS. Diabetic papillopathy with macular edema treated with intravitreal bevacizumab. Oman J Ophthalmol. 2012;5:138–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kim M, Lee JH, Lee SJ. Diabetic papillopathy with macular edema treated with intravitreal ranibizumab. Clin Ophthalmol. 2013;7:2257–60.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yildirim M, Kilic D, Dursun ME, Dursun B. Diabetic papillopathy treated with intravitreal ranibizumab. Int Med Case Rep J. 2017;10:99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    The Diabetic Retinopathy Study Research Group. Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. Arch Ophthalmol. 1979;97:654–5.CrossRefGoogle Scholar
  57. 57.
    Bashshur RL, Mandil SH, Shannon GW. Telemedicine/telehealth: an international perspective. Executive summary. Telemed J E Health. 2002;8:95–107.PubMedCrossRefGoogle Scholar
  58. 58.
    Shi L, Wu H, Dong J, et al. Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br J Ophthalmol. 2015;99(6):823–31.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zimmer-Galler IE, Kimura AE, Gupta S. Diabetic retinopathy screening and the use of telemedicine. Curr Opin Ophthalmol. 2015;26(3):167–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Salongcay RP, Silva PS. The role of teleophthalmology in the management of diabetic retinopathy. Asia Pac J Ophthalmol. 2018;7(1):17–21.CrossRefGoogle Scholar
  61. 61.
    Moss S, Klein R, Kessler S, et al. Comparison between ophthalmoscopy and fundus photography in determining severity of diabetic eye disease. Ophthalmology. 1985;92:62–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Ahmed J, Ward TP, Bursell SE, et al. The sensitivity and specificity of non mydriatic digital stereoscopic retinal imaging in detecting diabetic retinopathy. Diabetes Care. 2006;29:2205–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Maguire A, Chan A, Cusumano J, et al. The case for biennial retinopathy screening in children and adolescents. Diabetes Care. 2005;28:509–13.PubMedCrossRefGoogle Scholar
  64. 64.
    The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol. 1976;81:383–96.CrossRefGoogle Scholar
  65. 65.
    Csutak A, Lengyel I, Jonasson F, et al. Agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula in the Reykjavik eye study. Eye. 2010;24:1568–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Silva PS, Cavallerano JD, Sun JK, et al. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120(12):2587–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Hellstedt T, Vesti E, Immonen I. Identification of individual microaneurysms: a comparison between fluorescein angiograms and red-free and colour photographs. Graefes Arch Clin Exp Ophthalmol. 1996;234:S13–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Seo EJ, Kim JG. Analysis of the normal peripheral retinal vascular pattern and its correlation with microvascular abnormalities using ultra-widefield fluorescein angiography. Retina. 2017. (Epub ahead of print).Google Scholar
  69. 69.
    Diabetes Control and Complications Trial Research Group. Color photography versus fluorescein angiography in the detection of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol. 1987;105:1344–51.CrossRefGoogle Scholar
  70. 70.
    Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology. 1991;98:823–33.CrossRefGoogle Scholar
  71. 71.
    Dimitrova G, Kato S. Color Doppler imaging of retinal diseases. Surv Ophthalmol. 2010;55:193–214.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang H, Chhablani J, Freeman WR, et al. Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;153:861–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bolz M, Schmidt-Erfurth U, Deak G, et al. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Kang JW, Chung H, Chan Kim H. Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina. 2016;36(9):1630–9.PubMedCrossRefGoogle Scholar
  75. 75.
    De Benedetto U, Sacconi R, Pierro L, et al. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina. 2015;35(3):449–53.PubMedCrossRefGoogle Scholar
  76. 76.
    van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;14:2715–9.CrossRefGoogle Scholar
  77. 77.
    De Clerck EE, Schouten JS, Berendschot TT, et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol. 2015;3:653–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Vujosevic S, Muraca A, Alkabes M, et al. Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina. 2017. (Epub ahead of print).Google Scholar
  79. 79.
    Pierro L, Iuliano L, Cicinelli MV, et al. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol. 2017;27:346–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Scarinci F, Picconi F, Virgili G, et al. Single retinal layer evaluation in patients with type 1 diabetes with no or early signs of diabetic retinopathy: the first hint of neurovascular crosstalk damage between neurons and capillaries? Ophthalmologica. 2017;237:223–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Regatieri CV, Branchini L, Carmody J, et al. Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina. 2012;32:563–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Querques G, Lattanzio R, Querques L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53:6017–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Abadia B, Suñen I, Calvo P, et al. Choroidal thickness measured using swept-source optical coherence tomography is reduced in patients with type 2 diabetes. PLoS One. 2018;13(2):e0191977.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.PubMedCrossRefGoogle Scholar
  85. 85.
    Bandello F, Corbelli E, Carnevali A, Pierro L, Querques G. Optical Coherence Tomography Angiography of Diabetic Retinopathy. In: Bandello F, Souied EH, Querques G, editors. OCT Angiography in Retinal and Macular Diseases. Dev Ophthalmol, vol. 56. Basel: Karger; 2016. p. 107–12.CrossRefGoogle Scholar
  86. 86.
    Schaal KB, Munk MR, Wyssmueller I, et al. Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina. 2017. (Epub ahead of print).Google Scholar
  87. 87.
    La Mantia A, Kurt RA, Mejor S, et al. Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion. Retina. 2018. (Epub ahead of print).Google Scholar
  88. 88.
    Sandhu HS, Eladawi N, Elmogy M, et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Br J Ophthalmol. 2018. (Epub ahead of print).Google Scholar
  89. 89.
    Hamada M, Ohkoshi K, Inagaki K, Ebihara N, Murakami A. Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images. Jpn J Ophthalmol. 2018;62(2):168–75.PubMedCrossRefGoogle Scholar
  90. 90.
    Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163–80.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Scarinci F, Picconi F, Giorno P, et al. Deep capillary plexus impairment in patients with type 1 diabetes mellitus with no signs of diabetic retinopathy revealed using optical coherence tomography angiography. Acta Ophthalmol. 2017;96(2):e264–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Simonett JM, Scarinci F, Picconi F, et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. 2017;95(8):e751–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702.PubMedCrossRefGoogle Scholar
  94. 94.
    Cao D, Yang D, Huang Z. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol. 2018;55(5):469–77.PubMedCrossRefGoogle Scholar
  95. 95.
    Midena E, Pilotto E. Emerging Insights into Pathogenesis. In: Bandello F, Zarbin MA, Lattanzio R, Zucchiatti I, editors. Management of Diabetic Retinopathy. Dev Ophthalmol, vol. 60. Basel: Karger; 2017. p. 16–27.CrossRefGoogle Scholar
  96. 96.
    Tam J, Dhamdhere KP, Tiruveedhula P, et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom Vis Sci. 2012;89:E692–703.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lung JC, Swann PG, Chan HH. Early local functional changes in the human diabetic retina: a global flash multifocal electroretinogram study. Graefes Arch Clin Exp Ophthalmol. 2012;250:1745–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Hood DC, Bach M, Brigell M, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124:1–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Simo R, Hernandez C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.PubMedCrossRefGoogle Scholar
  100. 100.
    Jonsson KB, Frydkjaer-Olsen U, Grauslund J. Vascular Changes and Neurodegeneration in the Early Stages of Diabetic Retinopathy: Which Comes First? Ophthalmic Res. 2016;56(1):1–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Bronson-Castain KW, Bearse MA Jr, Neuville J, et al. Adolescents with type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina. 2009;29:618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bronson-Castain KW, Bearse MA Jr, Neuville J, et al. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina. 2012;32:92–102.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tan W, Wright T, Dupuis A, et al. Localizing functional damage in the neural retina of adolescents and young adults with type 1 diabetes. Invest Ophthalmol Vis Sci. 2014;55:2432–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Wolff BE, Bearse MA Jr, Schneck ME, et al. Color vision and neuroretinal function in diabetes. Doc Ophthalmol. 2015;130(2):131–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Heravian J, Ehvaei A, Shoeibi N, et al. Pattern visual evoked potentials in patients with type II diabetes mellitus. J Ophthalmic Vis Res. 2012;7:225–30.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Jackson GR, Scott IU, Quillen DA, et al. Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy. Br J Ophthalmol. 2012;96:699–703.PubMedCrossRefGoogle Scholar
  107. 107.
    Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projection for 2030. Diabetes Care. 2004;27:1047–53.PubMedCrossRefGoogle Scholar
  108. 108.
    Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60:428–31.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Beaser RS, Turell WA, Howson A. Strategies to improve prevention and management in diabetic retinopathy: Qualitative insights from a mixed-methods study. Diabetes Spectr. 2018;31(1):65–74.PubMedCrossRefGoogle Scholar
  110. 110.
    The Kroc Collaborative Study Group. Blood glucose control and the evolution of diabetic retinopathy and albuminuria. A preliminary multicenter trial. N Engl J Med. 1984;311:365–72.CrossRefGoogle Scholar
  111. 111.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  112. 112.
    The Diabetes Control and Complications Trial. The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus. Arch Ophthalmol. 1995;113:36–51.CrossRefGoogle Scholar
  113. 113.
    The Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the diabetes control and complications trial. Ophthalmology. 1995;102:647–61.CrossRefGoogle Scholar
  114. 114.
    The Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44:968–83.CrossRefGoogle Scholar
  115. 115.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  116. 116.
    UK Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J. 1998;317:703–13.CrossRefGoogle Scholar
  117. 117.
    Gedebjerg A, Almdal TP, Berencsi K, et al. Prevalence of micro- and macrovascular diabetes complications at time of type 2 diabetes diagnosis and associated clinical characteristics: A cross-sectional baseline study of 6958 patients in the Danish DD2 cohort. J Diabetes Complications. 2018;32(1):34–40.PubMedCrossRefGoogle Scholar
  118. 118.
    The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342:381–9.PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002;287:2563–9.CrossRefGoogle Scholar
  120. 120.
    The Diabetes Control and Complications Trial Research Group. Early worsening of diabetic retinopathy in the diabetes control and complications trial. Arch Ophthalmol. 1998;116:874–86.CrossRefGoogle Scholar
  121. 121.
    Feldman-Billard S, Larger É, Massin P, Standards for screening and surveillance of ocular complications in people with diabetes SFD study group. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab. 2017;44(1):4–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet. 1993;341:1306–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Baruah MP, Kalra S. The novel use of GLP-1 and insulin combination in type 2 diabetes mellitus. Recent Pat Endocr Metab Immune Drug Discov. 2012;6:129–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. J Curr Ophthalmol. 2016;29(1):7–16.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Behl T, Kotwani A. Potential of angiotensin II receptor blockers in the treatment of diabetic retinopathy. Life Sci. 2017;1:176:1–9.Google Scholar
  127. 127.
    Sjolie AK, Chaturvedi N. The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy. J Hum Hypertens. 2002;16:2–6.CrossRefGoogle Scholar
  128. 128.
    Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol. 2006;38:752–65.PubMedCrossRefGoogle Scholar
  129. 129.
    Chaturvedi N, Sjolie AK, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet. 1998;351:28–31.PubMedCrossRefGoogle Scholar
  130. 130.
    Chaturvedi N, Porta M, Klein R, et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet. 2008;372:1394–402.PubMedCrossRefGoogle Scholar
  131. 131.
    Sjolie AK, Klein R, Porta M, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet. 2008;372:1385–93.PubMedCrossRefGoogle Scholar
  132. 132.
    Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361:40–51.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Chew EY, Klein ML, Ferris FL, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996;114:1079–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang XZ, Tu WJ, Wang H, et al. Circulating serum fatty acid binding protein 4 levels predict the development of the diabetic retinopathy in type 2 diabetic patients. Am J Ophthalmol. 2018;187:71–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Chatziralli IP. The role of Dyslipidemia control in the progression of Diabetic Retinopathy in patients with Type 2 Diabetes Mellitus. Diabetes Ther. 2017;8(2):209–12.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Mozetic V, Freitas CG, Riera R. Statins and Fibrates for Diabetic Retinopathy: protocol for a systematic review. JMIR Res Protoc. 2017;6(2):e30.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ioannidou E, Tseriotis VS, Tziomalos K. Role of lipid-lowering agents in the management of diabetic retinopathy. World J Diabetes. 2017;8(1):1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Colhoun HM, Bettridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicenter randomised placebo-controlled trial. Lancet. 2004;364:685–96.PubMedCrossRefGoogle Scholar
  139. 139.
    Dodson PM. Medical treatment for diabetic retinopathy: do the FIELD microvascular study results support a role for lipid lowering? Pract Diabetes Int. 2008;25:76–9.CrossRefGoogle Scholar
  140. 140.
    Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.PubMedCrossRefGoogle Scholar
  141. 141.
    Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD Study): randomized controlled trial. Lancet. 2007;370:1687–97.CrossRefGoogle Scholar
  142. 142.
    ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44.CrossRefGoogle Scholar
  143. 143.
    Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Knickelbein JE, Abbott AB, Chew EY. Fenofibrate and diabetic retinopathy. Curr Diab Rep. 2016;16(10):90.  https://doi.org/10.1007/s11892-016-0786-7.CrossRefPubMedGoogle Scholar
  146. 146.
    Hiukka A, Maranghi M, Matikaimen N, et al. PPARalpha: an emerging therapeutic target in diabetic microvascular damage. Nat Rev Endocrinol. 2010;5:454–63.CrossRefGoogle Scholar
  147. 147.
    Kim J, Ahn J-H, Kim J-H, et al. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res. 2007;84:886–93.PubMedCrossRefGoogle Scholar
  148. 148.
    Tomizawa A, Hattori Y, Inoue T, et al. Fenofibrate suppresses microvascular inflammation and apoptosis through adenosine monophosphate-activated protein kinase. Metabolism. 2011;60:513–22.PubMedCrossRefGoogle Scholar
  149. 149.
    American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2013;36:S11–66.CrossRefGoogle Scholar
  150. 150.
    Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J. 1998;332:281–92.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288:2579–88.PubMedCrossRefGoogle Scholar
  152. 152.
    Bullock WH, Magnuson SR, Choi S. Prospects for kinase activity modulators in the treatment of diabetes and diabetic complications. Curr Top Med Chem. 2002;2:915–38.PubMedCrossRefGoogle Scholar
  153. 153.
    Gálvez MI. Protein kinase C inhibitors in the treatment of diabetic retinopathy. Review. Curr Pharm Biotechnol. 2011;12(3):386–91.PubMedCrossRefGoogle Scholar
  154. 154.
    The PKC-DR Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe non proliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes. 2005;54:2188–97.CrossRefGoogle Scholar
  155. 155.
    PKC-DR2 Study Group. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology. 2006;113:2221–30.CrossRefGoogle Scholar
  156. 156.
    McGill JB, King GL, Berg PH, et al. Clinical safety of the selective PKC-beta inhibitor, ruboxistaurin. Expert Opin Drug Saf. 2006;5:835–45.PubMedCrossRefGoogle Scholar
  157. 157.
    Sheetz MJ, Aiello LP, Shahri N, Mbdv Study Group, et al. Effect of ruboxistaurin (RBX) on visual acuity decline over a 6-year period with cessation and reinstitution of therapy: results of an open-label extension of the Protein Kinase C Diabetic Retinopathy Study 2 (PKC-DRS2). Retina. 2011;31:1053–9.PubMedCrossRefGoogle Scholar
  158. 158.
    American Academy of Ophthalmology Retina Panel. Preferred practice pattern: diabetic retinopathy. San Francisco: American Academy of Ophthalmology; 2008.Google Scholar
  159. 159.
    Javitt JC, Canner JK, Sommer A. Cost effectiveness of current approaches to the control of retinopathy in type 1 diabetes. Ophthalmology. 1989;96:255–64.PubMedCrossRefGoogle Scholar
  160. 160.
    Vijan S, Hofer TP, Hayward RA. Cost-utility analysis of screening intervals for diabetic retinopathy in patients with type 2 diabetes mellitus. JAMA. 2000;283:889–96.PubMedCrossRefGoogle Scholar
  161. 161.
    Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21:609–14.PubMedCrossRefGoogle Scholar
  162. 162.
    Moss SE, Klein R, Klein BE. Factors associated with having eye examinations in persons with diabetes. Arch Fam Med. 1995;4:529–34.PubMedCrossRefGoogle Scholar
  163. 163.
    Sprafka JM, Fritsche TL, Baker R, et al. Prevalence of undiagnosed eye disease in high-risk diabetic individuals. Arch Intern Med. 1990;150:857–61.PubMedCrossRefGoogle Scholar
  164. 164.
    Will JC, German RR, Schuman E, et al. Patient adherence to guidelines for diabetes eye care: results from the diabetic eye disease follow-up study. Am J Public Health. 1994;84:1669–71.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Brink SJ. Complications of pediatric and adolescent type 1 diabetes mellitus. Curr Diab Rep. 2001;1:47–55.PubMedCrossRefGoogle Scholar
  166. 166.
    Massin P, Erginay A, Mercat-Caudal I, et al. Prevalence of diabetic retinopathy in children and adolescents with type-1 diabetes attending summer camps in France. Diabetes Metab. 2007;33:284–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Majaliwa ES, Munubhi E, Ramaiya K, et al. Survey on acute and chronic complications in children and adolescents with type 1 diabetes at Muhimbili National Hospital in Dar es Salaam, Tanzania. Diabetes Care. 2007;30:2187–92.PubMedCrossRefGoogle Scholar
  168. 168.
    Sultan MB, Starita C, Huang K. Epidemiology, risk factors and management of paediatric diabetic retinopathy. Br J Ophthalmol. 2012;96:312–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Lueder GT, Silverstein J. American Academy of Pediatrics Section on Ophthalmology and Section on Endocrinology. Screening for retinopathy in the pediatric patient with type 1 diabetes mellitus. Pediatrics. 2005;116:270–3.PubMedCrossRefGoogle Scholar
  170. 170.
    Minuto N, Emmanuele V, Vannati M, et al. Retinopathy screening in patients with type 1 diabetes diagnosed in young age using a non-mydriatic digital stereoscopic retinal imaging. J Endocrinol Invest. 2012;35(4):389–94.PubMedGoogle Scholar
  171. 171.
    Rosenthal JM, Johnson MW. Management of Retinal Diseases in Pregnant Patients. J Ophthalmic Vis Res. 2018;13(1):62–5.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kollias AN, Ulbig MW. Diabetic retinopathy. Early diagnosis and effective treatment. Dtsch Arztebl Int. 2010;107:75–84.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Diabetic Retinopathy Study Research Group. Design, methods, and baseline results. DRS report number 6. Invest Ophthalmol Vis Sci. 1981;21:149–209.Google Scholar
  174. 174.
    Early Treatment Diabetic Retinopathy Study Research Group. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98:741–56.CrossRefGoogle Scholar
  175. 175.
    Ferris F. Early photocoagulation in patients with either type I or type II diabetes. Trans Am Ophthalmol Soc. 1996;94:505–37.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Reddy S, Hu A, Schwartz SD. Ultra-wide field fluorescein angiography guided targeted retinal photocoagulation (TRP). Semin Ophthalmol. 2009;24(1):9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Muqit MKM, Marcellino GR, Henson DB, et al. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91(3):251–8.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Wells JA, Glassman AR, Ayala AR, Diabetic Retinopathy Clinical Research Network, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Bandello F, De Benedetto U, Knutsson KA, et al. Ranibizumab in the treatment of patients with visual impairment due to diabetic macular edema. Clin Ophthalmol. 2011;5:1303–8.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Nguyen QD, Brown DM, Marcus DM, et al.; RISE and RIDE Research Group. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.Google Scholar
  181. 181.
    Bressler NM, Varma R, Mitchell P, et al. Effect of Ranibizumab on the Decision to Drive and Vision Function Relevant to Driving in Patients With Diabetic Macular Edema: Report From RESTORE, RIDE, and RISE Trials. JAMA Ophthalmol. 2016;134(2):160–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Mitchell P, Bandello F, Schmidt-Erfurth U, et al.; RESTORE Study Group. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615–25.Google Scholar
  183. 183.
    Schmidt-Erfurth U, Lang GE, Holz FG, et al.; RESTORE Extension Study Group. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology. 2014;121(5):1045–53.CrossRefGoogle Scholar
  184. 184.
    Bressler NM, Edwards AR, Beck RW, et al.; Diabetic Retinopathy Clinical Research Network. Exploratory Analysis of of Diabetic Retinopathy Progression through 3 Years in a Randomized Clinical Trial Comparing Intravitreal Triamcinolone with Focal/Grid Photocoagulation. Arch Ophthalmol. 2009;127(12):1566–1571.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Bressler SB, Qin H, Melia M, et al.; the Diabetic Retinopathy Clinical Research Network. Exploratory analysis of effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131(8): 1033–40.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Study of the efficacy and safety of intravitreal (IVT) aflibercept for the improvement of moderately severe to severe nonproliferative diabetic retinopathy (NPDR) (PANORAMA). Available at https://clinicaltrials.gov/ct2/show/NCT02718326. Accessed on Mar 2018.
  187. 187.
    Querques L, Parravano M, Sacconi R, et al. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017;54(8):769–73.PubMedCrossRefGoogle Scholar
  188. 188.
    Tamura H, Miyamoto K, Kiryu J, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005;46(4):1440–4.PubMedCrossRefGoogle Scholar
  189. 189.
    Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res. 2005;80(2):249–58.PubMedCrossRefGoogle Scholar
  190. 190.
    Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015;16(9):1321–35.CrossRefGoogle Scholar
  191. 191.
    Carrasco E, Hernández C, Miralles A, et al. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30:2902–8.PubMedCrossRefGoogle Scholar
  192. 192.
    García-Ramírez M, Hernández C, Villarroel M, et al. Inter photoreceptor retinoid-binding protein (IRBP) is down regulated at early stages of diabetic retinopathy. Diabetologia. 2009;52:2633–41.PubMedCrossRefGoogle Scholar
  193. 193.
    Imai H, Singh RS, Fort PE, et al. Neuroprotection for diabetic retinopathy. Dev Ophthalmol. 2009;44:56–68.PubMedCrossRefGoogle Scholar
  194. 194.
    Frydkjaer-Olsen U, Soegaard Hansen R, Simó R, Cunha-Vaz J, Peto T, Grauslund J, EUROCONDOR. Correlation between retinal vessel calibre and neurodegeneration in patients with type 2 diabetes mellitus in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Ophthalmic Res. 2016;56(1):10–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Saylor M, McLoon LK, Harrison AR, et al. Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch Ophthalmol. 2009;127:402–6.PubMedCrossRefGoogle Scholar
  196. 196.
    Lambooij AC, Kuijpers RW, van Lichtenauer-Kaligis EG, et al. Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:2329–35.PubMedGoogle Scholar
  197. 197.
    Davis MI, Wilson SH, Grant MB, et al. The therapeutic problem of proliferative diabetic retinopathy: targeting somatostatin receptors. Horm Metab Res. 2001;33:295–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Simó R, Carrasco E, García-Ramírez M, et al. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev. 2006;2:71–98.PubMedCrossRefGoogle Scholar
  199. 199.
    Hernández C, Simó-Servat O, Simó R. Somatostatin and diabetic retinopathy: current concepts and new therapeutic perspectives. Endocrine. 2014;46(2):209–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Santos AR, Ribeiro L, Bandello F, et al. European Consortium for the early treatment of Diabetic Retinopathy (EUROCONDOR) Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes. 2017;66(9):2503–10.PubMedCrossRefGoogle Scholar
  201. 201.
    Grant MB, Mames RN, Fitzgerald C, et al. The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: a randomized controlled study. Diabetes Care. 2000;23:504–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Kirkegaard C, Nørgaard K, Snorgaard O, et al. Effect of one year continuous subcutaneous infusion of a somatostatin analogue, octreotide, on early retinopathy, metabolic control and thyroid function in Type I (insulin-dependent) diabetes mellitus. Acta Endocrinol. 1990;122:766–72.PubMedCrossRefGoogle Scholar
  203. 203.
    Extension study of the long-term safety and tolerability of octreotide acetate in patients with moderately severe or severe non-proliferative diabetic retinopathy or low risk proliferative diabetic retinopathy. 2018. Available at http://clinicaltrials.gov/ct/show/NCT00248157. Accessed Mar 2018.
  204. 204.
    Octreotide acetate in microspheres in patients with diabetic retinopathy. 2018. Available at http://clinicaltrials.gov/ct/show/NCT00131144. Accessed Mar 2018.
  205. 205.
    Mohamed Q, Wong TY. Emerging drugs for diabetic retinopathy. Expert Opin Emerg Drugs. 2008;13:675–94.PubMedCrossRefGoogle Scholar
  206. 206.
    Evaluation of doxycycline versus placebo for the treatment of severe non proliferative or mild or moderate proliferative diabetic retinopathy (POC1). 2018. Available at http://clinicaltrials.gov/ct/show/NCT00511875. Accessed Mar 2018.
  207. 207.
    Evaluation of effect of doxycycline versus placebo on retinal function and diabetic retinopathy (POC2). 2018. Available at http://clinicaltrials.gov/ct/show/NCT00917553. Accessed Mar 2018.
  208. 208.
    Paterniti I, Di Paola R, Campolo M, et al. Palmitoylethanolamide treatment reduces retinal inflammation in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2015;769:313–23.PubMedCrossRefGoogle Scholar
  209. 209.
    Chous AP, SP R, JD G, RA K. The diabetes visual function supplement study (DiVFuSS). Br J Ophthalmol. 2016;100(2):227–34.PubMedCrossRefGoogle Scholar
  210. 210.
    Khalaf N, Helmy H, labib H, et al. Role of angiopoietins and Tie-2 in diabetic retinopathy. Electron Physician. 2017;9(8):5031–5.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Souma T, Thomson BR, Heinen S, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. PNAS. 2018;115:1298–303.PubMedCrossRefGoogle Scholar
  212. 212.
    Campochiaro PA, Khanani A, Singer M, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016;123(8):1722–30.PubMedCrossRefGoogle Scholar
  213. 213.
    The TIME-2b study: a study of AKB-9778, a novel Tie 2 activator, in patients with non-proliferative diabetic retinopathy (NPDR) (TIME-2b). 2018. Available at https://clinicaltrials.gov/ct2/show/NCT03197870. Accessed on Mar 2018.
  214. 214.
    Rodríguez-Carrizalez AD, Castellanos-González JA, Martínez-Romero EC, et al. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: A phase IIa, randomized, double-blind, and placebo-controlled study. Redox Rep. 2016;21(4):155–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Bandello
    • 1
    Email author
  • Rosangela Lattanzio
    • 1
  • Emanuela Aragona
    • 1
  • Alessandro Marchese
    • 1
  • Giuseppe Querques
    • 1
  • Ilaria Zucchiatti
    • 1
  1. 1.Department of OphthalmologyVita-Salute University, San Raffaele Scientific InstituteMilanItaly

Personalised recommendations