Skip to main content

Approximating the Caro-Wei Bound for Independent Sets in Graph Streams

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

Abstract

The Caro-Wei bound states that every graph \(G=(V, E)\) contains an independent set of size at least \(\beta (G) := \sum _{v \in V} \frac{1}{\deg _G(v) + 1}\), where \(\deg _G(v)\) denotes the degree of vertex v. Halldórsson et al. [1] gave a randomized one-pass streaming algorithm that computes an independent set of expected size \(\beta (G)\) using \(\mathrm {O}(n \log n)\) space. In this paper, we give streaming algorithms and a lower bound for approximating the Caro-Wei bound itself.

In the edge arrival model, we present a one-pass c-approximation streaming algorithm that uses \(\mathrm {O}({\overline{d} \log (n) /c^2})\) space, where \(\overline{d}\) is the average degree of G. We further prove that space \(\varOmega ({\overline{d}/c^2})\) is necessary, rendering our algorithm almost optimal. This lower bound holds even in the vertex arrival model, where vertices arrive one by one together with their incident edges that connect to vertices that have previously arrived. In order to obtain a poly-logarithmic space algorithm even for graphs with arbitrarily large average degree, we employ an alternative notion of approximation: We give a one-pass streaming algorithm with space \(\mathrm {O}(\log ^3 n)\) in the vertex arrival model that outputs a value that is at most a logarithmic factor below the true value of \(\beta \) and no more than the maximum independent set size.

The work of GC is supported in part by European Research Council grant ERC-2014-CoG 647557, The Alan Turing Institute under EPSRC grant EP/N510129/1 the Yahoo Faculty Research and Engagement Program and a Royal Society Wolfson Research Merit Award; JD is supported by a Microsoft Research Studentship; and CK by EPSRC grant EP/N011163/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the notation \(\tilde{\mathrm {O}}(.), \tilde{\varTheta }(.)\) and \(\tilde{\varOmega }(.)\), which correspond to \(\mathrm {O}(.)\), \(\varTheta (.)\) and \(\varOmega (.)\), respectively, where all polylogarithmic factors are ignored.

References

  1. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms for independent sets in sparse hypergraphs. Algorithmica 76(2), 490–501 (2016)

    Article  MathSciNet  Google Scholar 

  2. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  3. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  4. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

  5. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math. 18(2), 219–225 (2005)

    Article  MathSciNet  Google Scholar 

  6. Halldórsson, M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. In: STOC, pp. 439–448 (1994)

    Google Scholar 

  7. Wei, V.: A lower bound on the stability number of a simple graph. Technical report, Bell Labs (1981)

    Google Scholar 

  8. Griggs, J.R.: Lower bounds on the independence number in terms of the degrees. J. Comb. Theory Ser. B 34(1), 22–39 (1983)

    Article  MathSciNet  Google Scholar 

  9. Caro, Y.: New results on the independence number. Technical report, Tel Aviv Univ (1979)

    Google Scholar 

  10. Halldórsson, M.M., Konrad, C.: Distributed large independent sets in one round on bounded-independence graphs. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 559–572. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_37

    Chapter  MATH  Google Scholar 

  11. Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication complexity of clique approximation. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 449–460. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_38

    Chapter  MATH  Google Scholar 

  12. Assadi, S., Khanna, S., Li, Y.: On estimating maximum matching size in graph streams. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1723–1742 (2017)

    Google Scholar 

  13. Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awakens: streaming algorithms for matching size estimation in sparse graphs. In: ESA (2017)

    Google Scholar 

  14. Cabello, S., Pérez-Lantero, P.: Interval selection in the streaming model. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 127–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_11

    Chapter  Google Scholar 

  15. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

    Article  MathSciNet  Google Scholar 

  16. Woodruff, D.P.: Frequency moments. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1169–1170. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9

    Chapter  Google Scholar 

  17. Braverman, V., Chestnut, S.R.: Universal sketches for the frequency negative moments and other decreasing streaming sums. In: APPROX/RANDOM, pp. 591–605 (2015)

    Google Scholar 

  18. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48(436–452), 137 (1941)

    Google Scholar 

  19. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. Technical report SRC 1998–011, DEC Systems Research Centre (1998)

    Google Scholar 

  20. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)

    Article  Google Scholar 

  21. Gonen, M., Ron, D., Shavitt, Y.: Counting stars and other small subgraphs in sublinear-time. SIAM J. Discrete Math. 25(3), 1365–1411 (2011)

    Article  MathSciNet  Google Scholar 

  22. Eden, T., Ron, D., Seshadhri, C.: Sublinear time estimation of degree distribution moments: the arboricity connection. CoRR abs/1604.03661 (2016)

    Google Scholar 

  23. Aliakbarpour, M., Biswas, A.S., Gouleakis, T., Peebles, J., Rubinfeld, R., Yodpinyanee, A.: Sublinear-time algorithms for counting star subgraphs with applications to join selectivity estimation. CoRR abs/1601.04233 (2016)

    Google Scholar 

  24. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for Lp samplers, finding duplicates in streams, and related problems. In: ACM Principles of Database Systems (2011)

    Google Scholar 

  25. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer whose comments helped us simplify Theorem 1. The work of GC is supported in part by European Research Council grant ERC-2014-CoG 647557; JD is supported by a Microsoft EMEA scholarship and the Alan Turing Institute under the EPSRC grant EP/N510129/1; CK is supported by EPSRC grant EP/N011163/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cormode, G., Dark, J., Konrad, C. (2018). Approximating the Caro-Wei Bound for Independent Sets in Graph Streams. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics