An Overview of OCT Techniques for Detection of Ophthalmic Syndromes

  • Adeel M. Syed
  • Muhammad Usman Akbar
  • Joddat Fatima
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


The retina is an essential part of the human eye. It is a very small part at the subsequent pole of the human eye, and it is composed of a tissue cell that can detect the presence of light. The tissue is sensitive enough to detect the amount of light present, its intensity, and a range of different wavelengths as well. These tissues generate nerve signals, and those signals are passed to the brain via the optic nerve. If the retina malfunctions, then different retinal disorders can occur such as diabetic retinopathy, glaucoma, and pathologic myopia. These can be considered the major causes of total loss of vision throughout the world.

Usually these diseases are treated by different ophthalmologists and specialist of the fields, but it has been seen that once the disease strikes, it becomes very different and in most of the cases impossible to reverse and gain full vision fitness. Thus, it is of the essence that earlier detection of the disease must be done so that the remedy can work. If the treatment starts in time, vision can be saved. In order to perfectly detect the disease, the ophthalmologists require some quantitative and qualitative analysis of the disease. These readings have to be noted at the start of the detection and throughout the process of the therapy. Depending upon these readings, the ophthalmologists can declare where the patient is heading, toward betterment or toward a worse condition.

The gathering of these qualitative and quantitative metrics through manual methods is insufficient and produces erratic and inconsistent outputs. Therefore, it can be said with a certain degree of confidence that a computerized automated system must be in place to do the job. In this review, a comprehensive analysis and evaluation of practices are accomplished of diverse computer vision and image processing techniques applied to OCT images for an automatic, computer-aided examination for the diagnosis of retinal disorder diseases. Disease origins and causes are also testified, and these can have proved a very basic understanding of the disease and how the computer-aided diagnosis (CAD) system can be made using this knowledge. Therefore, this review can provide a good understanding to analyze visual impairments found in OCT images. This can be of aid to any researcher in the future to design a system for detection retinal diseases.


  1. 1.
    Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinso, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178–1181.CrossRefGoogle Scholar
  2. 2.
    Drexler, W., & Fujimoto, J. G. (2008). State-of-the-art retinal optical coherence tomography. Progress in Retinal and Eye Research, 27(1), 45–88. Scholar
  3. 3.
    Poddar, R., & Reddikumar, M. (2015). In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography. Optical and Laser Technology, 67, 33–37. Scholar
  4. 4.
    Povazay, B., Hofer, B., Torti, C., Hermann, B., Tumlinson, A. R., Esmaeelpour, M., Egan, C. A., Bird, A. C., & Drexler, W. (2009). Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Optics Express, 17(5), 4134–4150. Scholar
  5. 5.
    Lebed, E., Mackenzie, P. J., Sarunic, M. V., & Beg, F. M. (2010). Rapid volumetric OCT image acquisition using compressive sampling. Optics Express, 18(20), 21003–21012. Scholar
  6. 6.
    Young, M., Lebed, E., Jian, Y., Mackenzie, P. J., Beg, M. F., & Sarunic, M. V. (2011). Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography. Biomedical Optics Express, 2(9), 2690–2697. Scholar
  7. 7.
    Sieun, L., Lebed, E., Sarunic, M. V., & Beg, M. F. (2015). Exact surface registration of retinal surfaces from 3-D optical coherence tomography images. IEEE Transactions on Biomedical Engineering, 62(2), 609–617. Scholar
  8. 8.
    Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E., Schuman, J. S., Duker, J. S., Izatt, J. A., Swanson, E. A., & Fujimoto, J. G. (1995). Imaging of macular diseases with optical coherence tomography. Ophthalmology, 102(2), 217–229.CrossRefGoogle Scholar
  9. 9.
    Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208. Scholar
  10. 10.
    Bron, A. M., Francoz, A., Beynat, J., Nicot, F., Cattaneo, A., & Creuzot, C. (2011). Is choroidal thickness different between glaucoma patients and healthy subjects? Acta Ophthalmologica. Scholar
  11. 11.
    Bowd, C., Zangwill, L. M., Blumenthal, E. Z., Vasile, C., Boehm, A. G., Gokhale, P. A., Mohammadi, K., Amini, P., Sankary, T. M., & Weinreb, R. N. (2002). Imaging of the optic disc and retinal nerve fiber layer: The effects of age, optic disc area, refractive error, and gender. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19(1), 197–207.CrossRefGoogle Scholar
  12. 12.
    Bouma, B. (2001). Handbook of optical coherence tomography. New York: Taylor & Francis.CrossRefGoogle Scholar
  13. 13.
    Schuman, J. S. (2008). Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Transactions of the American Ophthalmological Society, 106, 426–458.Google Scholar
  14. 14.
    Wang, R. K., & Tuchin, V. V. (2013). Advanced biophotonics: Tissue optical sectioning. New York: Taylor & Francis.Google Scholar
  15. 15.
    Hee, M. R., Izatt, J. A., Swanson, E. A., Huang, D., Schuman, J. S., Lin, C. P., Puliafito, C. A., & Fujimoto, J. G. (1995). Optical coherence tomography of the human retina. Archives of Ophthalmology, 113(3), 325–332.CrossRefGoogle Scholar
  16. 16.
    Wojtkowski, M., Srinivasan, V., Fujimoto, J. G., Ko, T., Schuman, J. S., Kowalczyk, A., & Duker, J. S. (2005). Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology, 112(10), 1734–1746. Scholar
  17. 17.
    Wojtkowski, M. (2010). High-speed optical coherence tomography: Basics and applications. Applied Optics, 49(16), D30–D61. Scholar
  18. 18.
    Wojtkowski, M., Bajraszewski, T., Targowski, P., & Kowalczyk, A. (2003). Real-time in vivo imaging by high-speed spectral optical coherence tomography. Optics Letters, 28(19), 1745–1747. Scholar
  19. 19.
    Yun, S., Tearney, G., Bouma, B., Park, B., & de Boer, J. (2003). Highspeed spectral-domain optical coherence tomography at 1.3 lm wavelength. Optics Express, 11(26), 3598–3604. Scholar
  20. 20.
    Nassif, N., Cense, B., Hyle Park, B., Yun, S. H., Chen, T. C., Bouma, B. E., Tearney, G. J., & de Boer, J. F. (2004). In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 29(5), 480–482. Scholar
  21. 21.
    Bajraszewski, T., Wojtkowski, M., Szkulmowski, M., Szkulmowska, A., Huber, R., & Kowalczyk, A. (2008). Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 16(6), 4163–4176. Scholar
  22. 22.
    Potsaid, B., Gorczynska, I., Srinivasan, V. J., Chen, Y., Jiang, J., Cable, A., & Fujimoto, J. G. (2008). Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Optics Express, 16(19), 15149–15169. Scholar
  23. 23.
    Grulkowski, I., Gora, M., Szkulmowski, M., Gorczynska, I., Szlag, D., Marcos, S., Kowalczyk, A., & Wojtkowski, M. (2009). Anterior segment imaging with spectral OCT system using a high-speed CMOS camera. Optics Express, 17(6), 4842–4858. Scholar
  24. 24.
    Choma, M., Sarunic, M., Yang, C., & Izatt, J. (2003). Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 11(18), 2183–2189. Scholar
  25. 25.
    Yun, S. H., Boudoux, C., Tearney, G. J., & Bouma, B. E. (2003). High speed wavelength-swept semiconductor laser with a polygon scanner based wavelength filter. Optics Letters, 28(20), 1981–1983. Scholar
  26. 26.
    Golubovic, B., Bouma, B. E., Tearney, G. J., & Fujimoto, J. G. (1997). Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4? : Forsterite laser. Optics Letters, 2(22), 1704–1706. Scholar
  27. 27.
    Yun, S., Tearney, G., de Boer, J., Iftimia, N., & Bouma, B. (2003). High speed optical frequency-domain imaging. Optics Express, 11(22), 2953–2963. Scholar
  28. 28.
    Oh, W. Y., Yun, S. H., Tearney, G. J., & Bouma, B. E. (2005). 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Optics Letters, 30(23), 3159–3161. Scholar
  29. 29.
    Huber, R., Wojtkowski, M., Fujimoto, J. G., Jiang, J. Y., & Cable, A. E. (2005). Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 13(26), 10523–10538. Scholar
  30. 30.
    Larina, I. V., Furushima, K., Dickinson, M. E., Behringer, R. R., & Larin, K. V. (2009). Live imaging of rat embryos with Doppler swept source optical coherence tomography. Journal of Biomedical Optics, 14(5), 050506–050503. Scholar
  31. 31.
    Choma, M. A., Hsu, K., & Izatt, J. A. (2005). Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. Journal of Biomedical Optics, 10(4), 044009–044006. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adeel M. Syed
    • 1
  • Muhammad Usman Akbar
    • 1
  • Joddat Fatima
    • 1
  1. 1.Bahria University IslamabadIslamabadPakistan

Personalised recommendations