Physiologic Monitoring: Technological Advances Improving Patient Safety

  • Jeffrey A. Planchard


Monitoring is an essential aspect to the practice of anesthesiology. The American Society of Anesthesiologists (ASA) has established basic monitoring criteria for circulation, ventilation, oxygenation, and temperature. These monitors allow the anesthesia provider to observe ECG changes, monitor oxygen and anesthetic gas concentrations, quantify oxygen saturation, and maintain normothermia. These “standard” ASA monitors represent the minimum monitoring required for each anesthetic delivered.

Unfortunately, these basic monitors may not provide enough information for the management of a complex patient. These standard monitors do not assess certain variables (e.g., stroke volume, systemic vascular resistance, preload, and afterload) which are essential to the maintenance of blood pressure. Additionally, the ASA does not formally endorse any method of measuring the depth of general anesthesia (DGA), the monitoring of which can help in the prevention of anesthesia awareness. Accordingly, devices have been developed to aid in the measurement of these variables. Anesthetic monitoring has developed into a billion-dollar industry.

Given the vast array of devices on the market, this chapter will only focus on the most commonly encountered technologies currently available. Cardiac output monitoring allows for the mathematical extrapolation of numerous other variables. Transesophageal echocardiogram allows for the direct visualization of the heart, allowing for the assessment of volume status and cardiac abnormalities on a rapid basis. DGA monitoring has to date focused on frontal lobe electroencephalogram analysis as a proxy for consciousness. Each technology carries its own limitations and indications, the knowledge of which is essential for their proper use.


Standard ASA monitors Ohm’s law Thermodilution Continuous cardiac output Pulse contour analysis Transesophageal echocardiography Depth of general anesthesia 


  1. 1.
    Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15(2):214. Scholar
  2. 2.
    American Society of Anesthesiologists. (2015). Standards for basic anesthetic monitoring. Retrieved from
  3. 3.
    Aranake A, Mashour GA, Avidan MS. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 2013;68(5):512–22. Scholar
  4. 4.
    Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafranca A, et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med. 2011;365(7):591–600. Scholar
  5. 5.
    Barash, P. G. (2009). Clinical anesthesia. Wolters Kluwer/Lippincott Williams & Wilkins. Retrieved from
  6. 6.
    Camporota L, Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit Care. 2010;14(2):124. Scholar
  7. 7.
    Casazza F, Bongarzoni A, Capozi A, Agostoni O. Regional right ventricular dysfunction in acute pulmonary embolism and right ventricular infarction. Eur J Echocardiogr. 2005;6(1):11–4. Scholar
  8. 8.
    Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016;19(Supplement):S26–34. Scholar
  9. 9.
    Chilkoti G, Wadhwa R, Saxena AK. Technological advances in perioperative monitoring: current concepts and clinical perspectives. J Anaesthesiol Clin Pharmacol. 2015;31(1):14–24. Scholar
  10. 10.
    Comunale ME, Body SC, Ley C, Koch C, Roach G, Mathew JP, et al. The concordance of intraoperative left ventricular wall-motion abnormalities and electrocardiographic S-T segment changes: association with outcome after coronary revascularization. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Anesthesiology. 1998;88(4):945–54. Scholar
  11. 11.
    Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Contin Educ Anaesth Crit Care Pain. 2012;12(1):5–10. Scholar
  12. 12.
  13. 13.
    Evans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Rev Scand J Surg. 2009;98:199–208. Retrieved from CrossRefGoogle Scholar
  14. 14.
    Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. Q J Exp Physiol Cogn Med Sci. 1954;39(3):153–64. Retrieved from PubMedGoogle Scholar
  15. 15.
    Goddard N, Smith D. Unintended awareness and monitoring of depth of anaesthesia. Contin Educ Anaesth Crit Care Pain. 2013;13(6):213–7. Scholar
  16. 16.
    Huygh J, Peeters Y, Bernards J, Malbrain MLNG. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods. F1000Res. 2016;5
  17. 17.
    Ironfield CM, Davidson AJ. AEP-monitor/2 derived, composite auditory evoked potential index (AAI-1.6) and bispectral index as predictors of sevoflurane concentration in children. Pediatr Anesth. 2007;17(5):452–9. Scholar
  18. 18.
    Jardins, T., & Burton, G. (2011). Clinical manifestations and assessment of respiratory disease. Retrieved from
  19. 19.
    Ji F, Li J, Fleming N, Rose D, Liu H. Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine. J Clin Monit Comput. 2015;29(4):467–73. Scholar
  20. 20.
    Kissin I, Vlassakov K. A quest to increase safety of anesthetics by advancements in anesthesia monitoring: scientometric analysis. Drug Des Devel Ther. 2015;9:2599. Scholar
  21. 21.
    Lee AJ, Cohn JH, Ranasinghe JS. Cardiac output assessed by invasive and minimally invasive techniques. Anesthesiol Res Pract. 2011;2011:475151. Scholar
  22. 22.
    Markets and Markets. (2015). Anesthesia monitoring devices market worth 1,616 million USD by 2020. Retrieved 6 May 2018, from
  23. 23.
    McGloin, S., & McLeod, A. (2010). Advanced practice in critical care: a case study approach. Wiley-Blackwell. Retrieved from
  24. 24.
    Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6(9):1022–9. Scholar
  25. 25.
    Moise SF, Sinclair CJ, Scott DHT. Pulmonary artery blood temperature and the measurement of cardiac output by thermodilution. Anaesthesia. 2002;57(6):562–6. Scholar
  26. 26.
    Musizza B, Ribaric S. Monitoring the depth of anaesthesia. Sensors. 2010;10(12):10896–935. Scholar
  27. 27.
    Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth. 1993;40(2):142–53. Scholar
  28. 28.
    Pace, N. (2015). Core topics in basic anaesthesia: prepare for the FRCA. Elsevier Health Sciences, UK. Retrieved from
  29. 29.
    Patil VP, Shetmahajan MG, Divatia JV. The modern integrated anaesthesia workstation. Indian J Anaesth. 2013;57(5):446–54. Scholar
  30. 30.
    Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014;6:CD003843. Scholar
  31. 31.
    Rani DD, Harsoor S. Depth of general anaesthesia monitors. Indian J Anaesth. 2012;56(5):437–41. Scholar
  32. 32.
    Recart A, White PF, Wang A, Gasanova I, Byerly S, Jones SB. Effect of auditory evoked potential index monitoring on anesthetic drug requirements and recovery profile after laparoscopic surgery: a clinical utility study. Anesthesiology. 2003;99(4):813–8. Retrieved from CrossRefGoogle Scholar
  33. 33.
    Reeves ST, Finley AC, Skubas NJ, Swaminathan M, Whitley WS, Glas KE, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:443–56. Scholar
  34. 34.
    Reich, D. L., David L., & Fischer, G. W. (n.d.). Perioperative transesophageal echocardiography: a companion to Kaplan’s cardiac anesthesia. Retrieved from
  35. 35.
    Rhodes A, Sunderland R. Arterial pulse power analysis: the LiDCOℳ plus system. In:Functional Hemodynamic Monitoring. Berlin/Heidelberg: Springer-Verlag; 2005. p. 183–92. Scholar
  36. 36.
    Sessler DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology. 2008;109(2):318–38. Scholar
  37. 37.
    Shander A, Lobel GP, Mathews DM. Brain monitoring and the depth of anesthesia. Anesth Analg. 2018;126(2):705–9. Scholar
  38. 38.
    Shepherd J, Jones J, Frampton G, Bryant J, Baxter L, Cooper K. Clinical effectiveness and cost-effectiveness of depth of anaesthesia monitoring (E-Entropy, Bispectral Index and Narcotrend): a systematic review and economic evaluation. Health Technol Assess (Winch Eng). 2013;17(34):1–264. Scholar
  39. 39.
    Singh A, Wakefield BJ, Duncan AE. Complications from brachial arterial pressure monitoring are rare in patients having cardiac surgery. J Thorac Dis. 2018;10(2):E158–9. Scholar
  40. 40.
    Sinha P, Koshy T. Monitoring devices for measuring depth of anesthesia - an overview. Indian J Anaesth. 2007;51(5):365. Retrieved from;year=2007;volume=51;issue=5;spage=365;epage=365;aulast=Sinha Google Scholar
  41. 41.
    Slagt C, Malagon I, Groeneveld ABJ. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112(4):626–37. Scholar
  42. 42.
    Somchai A. Monitoring for depth of anesthesia: a review. J Biomed Graph Comput. 2012;2(2):119. Scholar
  43. 43.
    Stein EJ, Glick DB. Advances in awareness monitoring technologies. Curr Opin Anaesthesiol. 2016;29(6):711–6. Scholar
  44. 44.
    Tewari K, Murthy TVSP. Intraoperative auditory evoked potential monitoring for anaesthesia depth and utilization of inhaled isoflurane. Open J Anesthesiol. 2017;07(04):109–19. Scholar
  45. 45.
    Treacher DF, Leach RM. Oxygen transport-1. Basic principles. BMJ (Clinical Research Ed.). 1998;317(7168):1302–6. Retrieved from CrossRefGoogle Scholar
  46. 46.
    Vincent J-L. Understanding cardiac output. Crit Care. 2008;12(4):174. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffrey A. Planchard
    • 1
  1. 1.Department of AnesthesiologySpringhill Medical CenterMobileUSA

Personalised recommendations