Stabilization Based on Fuzzy System for Structures Affected by External Disturbances

  • Marco A. Alcaraz-Rodriguez
  • Nohe R. Cazarez-CastroEmail author
  • Selene L. Cardenas-Maciel
  • Luis N. Coria
  • Sergio Contreras-Hernandez
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 785)


Vertical structures such as buildings, bridges and trusses are subjected to strong changes with respect to their original state of design due to different external disturbances. Seismic waves are leading sources of disturbances giving rise to lateral displacements, as well as vertical and angular deformations, which increase the risk of structural failure compromising the structure integrity. In order to prevent catastrophic failures in structures and its subsequent side effects, in this work we propose a scheme for the attenuation of the vibration effects in vertical structures by means of a control system based on a Mamdani-type fuzzy inference system. The fuzzy rules of the controller were designed such that the close loop system is guaranteed to satisfy the Lyapunov stability criterion. Numerical simulations were performed to evaluate the best performance and effectiveness of fuzzy control, considering that the controller is placed at different levels of the building and inducing as perturbations signals that approximate a seismic event. The results show that the proposed controller attenuates the vibration in the structure accomplishing the control objective.


Structures Fuzzy system Stabilization 



This research was partially funded by project number 6351.17-P and “Estabilización orbital de sistemas mecánicos - Parte II: Estudio de aspectos de estabilidad” from “Tecnológico Nacional de México”.


  1. 1.
    Bazán, E., Meli, R.: Diseño Sismico de Edificio. Limusa (2004)Google Scholar
  2. 2.
    Forrai, A., Hashimoto, S., Funato, H., Kamiyama, K.: Structural control technology: system identification and control of flexible structures. Comput. Control Eng. J. 12(6), 257–262 (2001)CrossRefGoogle Scholar
  3. 3.
    Angeles, J.M., Alvarez-Icaza, L.: Identificacion paramétrica de un edificio con falla estructural durante la excitación sísmica. In: Congreso Nacional de Control Automático (2015)Google Scholar
  4. 4.
    Concha, A., Alvarez-Icaza, L.: Identificación de edificios acoplados torsionalmente usando una parametrización vectorial y filtros integrales lineales. In: Congreso Nacional de Control Automático (2015)Google Scholar
  5. 5.
    Concha, A., Alvarez-Icaza, L., Garrido, R.: Observador adaptable para edificios basado en proyeccion paramétrica.Memorias del XVI Congreso Latinoamericano de Control Automático (2017)Google Scholar
  6. 6.
    García-Illescas, M., Alvarez-Icaza, L.: Identificación en línea de modelos estables de edificios en 3d. In: Congreso Nacional de Control Automático (2015)Google Scholar
  7. 7.
    Thenozhi, S., Yu, W.: Advances in modeling and vibration control of building structures. Ann. Rev. Control 37(2), 346–364 (2013)CrossRefGoogle Scholar
  8. 8.
    González-Padilla, M.: Modelado y control difuso de una estructura de edificio sometida a las vibraciones de un temblor. Master’s thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, 1 (2012)Google Scholar
  9. 9.
    Zhang, W., Chen, Y., Gao, H.: Energy-to-peak control for seismic-excited buildings with actuator faults and parameter uncertainties. J. Sound Vibr. 330(4), 581–602 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, A.-P., Lin, Y.-H.: Vibration control of a tall building subjected to earthquake excitation. J. Sound Vibr. 299(4), 757–773 (2007)CrossRefGoogle Scholar
  11. 11.
    Enríquez-Zàrate, J., Silva-Navarro, G., Abundis-Fong, H.: Active vibration suppression through positive acceleration feedback on a building-like structure: an experimental study. Mech. Syst. Signal Process. 72–73, 451–461 (2016)CrossRefGoogle Scholar
  12. 12.
    Salas, F.G., Juárez, R.: Controlador de seguimiento p-pi difuso auto-organizable aplicado a un robot paralelo. In: Congreso Nacional de Control Automático (2015)Google Scholar
  13. 13.
    Reyes, F.: Robótica-Control de robots manipuladores. Alfaomega Grupo Editor (2011)Google Scholar
  14. 14.
    Cazarez-Castro, N.R., Aguilar, L.T., Cardenas-Maciel, S.L., Goribar-Jimenez, C.A., Odreman-Vera, M.: Diseño de un controlador difuso mediante la síntesis difusa de lyapunov para la estabilización de un péndulo de rueda inercial. Rev. Iberoam. Autom. Inform. Ind. RIAI 14(2), 133–140 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Marco A. Alcaraz-Rodriguez
    • 1
  • Nohe R. Cazarez-Castro
    • 1
    Email author
  • Selene L. Cardenas-Maciel
    • 1
  • Luis N. Coria
    • 1
  • Sergio Contreras-Hernandez
    • 1
  1. 1.Tecnológico Nacional de Mexico - Instituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations