Advertisement

Optimal Sizing of Low-DropOut Voltage Regulators by NSGA-II and PVT Analysis

  • Jesus Lopez-Arredondo
  • Esteban Tlelo-Cuautle
  • Luis Gerardo de la Fraga
  • Victor Hugo Carbajal-Gomez
  • Miguel Aurelio Duarte-Villaseñor
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 785)

Abstract

The optimization of analog integrated circuits has been a challenge due to the fact that there are not rules or systematic guidelines to bias and size the transistors and other elements in the circuit under design. This Chapter reviews the design of generic operational amplifiers by using complementary metal-oxide-semiconductor (CMOS) integrated circuit technology and shows the optimization of three different low-dropout (LDO) voltage regulators that consists of an operational amplifier and passive circuit elements. We highlight that if one performs a sensitivity analysis for each LDO, then a reduced set of design variables can be selected to create the chromosome for performing a multi-objective optimization by the well-known Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In addition, the computed sensitivities are used to reduce the search spaces for the design variables of the MOS transistors to accelerate the optimization process. Finally, from the feasible solutions of the three LDOs, a process-voltage and temperature (PVT) analysis is performed to guarantee that the designed LDO is robust to variations.

Keywords

Low-dropout voltage regulator Multi-objective optimization Circuit sizing NSGA-II Operational transconductance amplifier MOS transistor SPICE 

Notes

Acknowledgements

This work is partially supported by CONACyT-Mexico under grant 237991.

References

  1. 1.
    Yang, Y., Zhu, H., Bi, Z., Yan, C., Zhou, D., Yangfeng, S., Zeng, X.: Smart-MSP: a self-adaptive multiple starting point optimization approach for analog circuit synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(3), 531–544 (2018)CrossRefGoogle Scholar
  2. 2.
    Bhanja, M., Ray, B.: Synthesis of nonlinear analog functions. J. Circuits Syst. Comput. 27(03), 1850040 (2018)CrossRefGoogle Scholar
  3. 3.
    Dvorak, J., Langhammer, L., Jerabek, J., Koton, J., Sotner, R., Polak, J.: Synthesis and analysis of electronically adjustable fractional-order low-pass filter. J. Circuits Syst. Comput. 27(02), 1850032 (2018)CrossRefGoogle Scholar
  4. 4.
    Oliveira, V.A., Alzate, R., Bhattacharyya, S.P.: A measurement-based approach with accuracy evaluation and its applications to circuit analysis and synthesis. Int. J. Circuit Theory Appl. 45(12), 1920–1941 (2017)CrossRefGoogle Scholar
  5. 5.
    Bhanja, M., Ray, B.N.: Synthesis procedure of configurable building block-based linear and nonlinear analog circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(12), 1940–1953 (2017)CrossRefGoogle Scholar
  6. 6.
    Kourany, T., Ghoneima, M., Hegazi, E., Ismail, Y.: Passiot: a pareto-optimal multi-objective optimization approach for synthesis of analog circuits using sobol’indices-based engine. Integr. VLSI J. 58, 9–21 (2017)CrossRefGoogle Scholar
  7. 7.
    Duarte-Villaseñor, M.A., Tlelo-Cuautle, E., De la Fraga, L.G.: Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits, Syst. Signal Process. 31(3), 849–863 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Singh, K., Jain, A., Mittal, A., Yadav, V., Singh, A.A., Jain, A.K., Gupta, M.: Optimum transistor sizing of CMOS logic circuits using logical effort theory and evolutionary algorithms. Integr. VLSI J. 60, 25–38 (2018)CrossRefGoogle Scholar
  9. 9.
    De, B.P., Maji, K.B., Kar, R., Mandal, D., Ghoshal, S.P.: Design of optimal cmos analog amplifier circuits using a hybrid evolutionary optimization technique. J. Circuits, Syst. Comput. 27(02), 1850029 (2018)CrossRefGoogle Scholar
  10. 10.
    Papadimitriou, A., Bucher, M.: Multi-objective low-noise amplifier optimization using analytical model and genetic computation. Circuits Syst. Signal Process. 36(12), 4963–4993 (2017)CrossRefGoogle Scholar
  11. 11.
    Maji, K.B., Kar, R., Mandal, D., Ghoshal, S.P.: An evolutionary approach based design automation of low power cmos two-stage comparator and folded cascode ota. AEU-Int. J. Electron. Commun. 70(4), 398–408 (2016)CrossRefGoogle Scholar
  12. 12.
    López-Arredondo, J., Tlelo-Cuautle, E., Fernández, F.V.: Optimization of IDO voltage regulators by nsga-ii. In: 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 1–4. IEEE (2016)Google Scholar
  13. 13.
    Sanabria-Borbón, A.C., Tlelo-Cuautle, E., de la Fraga, L.G.: Optimal sizing of amplifiers by evolutionary algorithms with integer encoding and \(g\_m/i\_d\) design method. In: NEO 2016, pp. 263–279. Springer (2018)Google Scholar
  14. 14.
    McConaghy, T., Breen, K., Dyck, J., Gupta, A.: Variation-aware design of custom integrated circuits: a hands-on field guide. Springer Science & Business Media (2012)Google Scholar
  15. 15.
    Lopez-Arredondo, J., Tlelo-Cuautle, E., Trejo-Guerra, R.: Optimizing an IDO voltage regulator by evolutionary algorithms considering tolerances of the circuit elements. In: 2015 16th Latin-American Test Symposium (LATS), pp. 1–5. IEEE (2015)Google Scholar
  16. 16.
    Nye, W., Riley, D.C., Sangiovanni-Vincentelli, A., Tits, A.L.: Delight. spice: an optimization-based system for the design of integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(4), 501–519 (1988)CrossRefGoogle Scholar
  17. 17.
    Michalewicz, Z.: Evolutionary computation techniques for nonlinear programming problems. Int. Trans. Oper. Res. 1(2), 223–240 (1994)CrossRefGoogle Scholar
  18. 18.
    Allen, P.E., Holberg, D.R.: CMOS analog circuit design, New York. Holt, Rinehart, and Winston, (1987)Google Scholar
  19. 19.
    Silva-Martinez, J., Steyaert, M., Sansen, W.: High-performance CMOS continuous-time filters, vol. 223. Springer Science & Business Media (2013)Google Scholar
  20. 20.
    Pankiewicz, B., Szczepański, S., Wójcikowski, M.: Bulk linearized CMOS differential pair transconductor for continuous-time OTA-C filter design. Bull. Pol. Acad. Sci. Techn. Sci. 62(1), 77–84 (2014)Google Scholar
  21. 21.
    Nauta, B.: Analog CMOS filters for very high frequencies, vol. 190. Springer Science & Business Media (2012)Google Scholar
  22. 22.
    Milliken, R.J., Silva-Martínez, J., Sánchez-Sinencio, E.: Full on-chip CMOS low-dropout voltage regulator. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(9), 1879–1890 (2007)CrossRefGoogle Scholar
  23. 23.
    Fathipour, R., Saberkari, A., Martinez, H., Alarcón, E.: High slew rate current mode transconductance error amplifier for low quiescent current output-capacitorless cmos ldo regulator. Integr. VLSI J. 47(2), 204–212 (2014)CrossRefGoogle Scholar
  24. 24.
    Gupta, V., Rincon-Mora, G.A., Raha, P.: Analysis and design of monolithic, high PSR, linear regulators for SoC applications. In: Proceedings of the IEEE International SOC Conference, pp. 311–315, September 2004Google Scholar
  25. 25.
    Rincon-Mora, G.: Analog IC Design with Low-Dropout Regulators. McGraw-Hill, Inc. (2009)Google Scholar
  26. 26.
    Hazucha, P., Karnik, T., Bloechel, B.A., Parsons, C., Finan, D., Borkar, S.: Area-efficient linear regulator with ultra-fast load regulation. IEEE J. Solid-State Circuits 40(4), 933–940 (2005)CrossRefGoogle Scholar
  27. 27.
    Giustolisi, G., Palumbo, G., Spitale, E.: Robust miller compensation with current amplifiers applied to ldo voltage regulators. IEEE Trans. Circuits Syst. I: Regu. Pap. 59(9), 1880–1893 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jesus Lopez-Arredondo
    • 1
  • Esteban Tlelo-Cuautle
    • 1
  • Luis Gerardo de la Fraga
    • 2
  • Victor Hugo Carbajal-Gomez
    • 3
  • Miguel Aurelio Duarte-Villaseñor
    • 4
  1. 1.INAOETonantzintla, PueblaMexico
  2. 2.Computer Science DepartmentMexico CityMexico
  3. 3.Universidad Autónoma de TlaxcalaTlaxcalaMexico
  4. 4.Catedrático CONACYT en el Instituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations