Advertisement

Design and Development of a Medical Device (Artificial Ganglion) for Aids in the Treatment of Lymphedema

  • Pilar Hernandez-Grajeda
  • Alberto Rossa-Sierra
  • Gabriela Durán-Aguilar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 818)

Abstract

In 2016, according to the National Institute of Statistics and Geography the incidence of breast malignancy among the population aged 20 years and over is 14.80 new cases per 100,000 people. In women, it peaks in those of the 60–64 age group (68.05 for every 100,000 women in that age group). Worldwide, it is estimated that each year 1.38 million new cases are detected and there are 458,000 deaths due to this cause, being this type of cancer with higher incidence among women [1]. Depending on the type of cancer detected, the treatment is different. Doctors indicate, however, that when there is surgery or radiation in the procedure, lymph nodes are removed or damaged resulting in the majority of cases the disease is known as lymphedema. Through the studies of the American Cancer Society [2] it can be observed that “lymphedema is produced by surgery, radiation or cancer”. In this work a literature review will be presented in order to focus on the need of considering Human Factors and Usability evaluations during the first stages of the design process for a new artificial ganglion that may help breast cancer survivors with lymphedema to improve their well-being.

Keywords

Medical devices Artificial ganglion Lymphedema User-centered design Usability Human factors Systems approach 

References

  1. 1.
    Instituto Nacional de Estadística y Geografía (2016) Estadísticas a propósito del día mundial de la lucha contra el cáncer de mama. http://www.inegi.org.mx/saladeprensa/aproposito/2016/mama2016_0.pdf. Accessed 05 June 2017
  2. 2.
    American Cancer Society (2016) Qué es lo que causa linfedema vinculado con el cáncer. https://www.cancer.org/es/tratamiento/tratamientos-y-efectossecundarios/efectos-secundarios-fisicos/linfedema/que-es-linfedema.html. Accessed 17 July 2017
  3. 3.
    Organización Mundial de la Salud (2016) Organización Mundial de la Salud. http://www.who.int/disabilities/care/es/
  4. 4.
    National Cancer Institute (2017) Aspectos generales de las opciones de tratamiento. https://www.cancer.gov/espanol/tipos/seno/paciente/tratamiento-seno-pdq#section/_52. Accessed 10 June 2017
  5. 5.
    National Cancer Institute (2017) Efectos Secundarios. https://www.cancer.gov/espanol/tipos/seno/paciente/tratamiento-seno-pdq#section/_52. Accessed 15 July 2017
  6. 6.
    American Cancer Institute (2016) Cirugía de ganglios linfáticos para el cáncer de seno. https://www.cancer.org/es/cancer/cancer-de-seno/tratamiento/cirugia-del-cancer-de-seno/cirugia-de-ganglios-linfaticos-para-el-cancer-de-seno.html. Accessed 16 June 2017
  7. 7.
    Sharples S, Martin J, Lang A, Craven M, O’Neill S, Barnett J (2012) Medical device design in context: a model of user-device interaction and consequences. Displays 33:221–232CrossRefGoogle Scholar
  8. 8.
    Martin JL, Clark DJ, Morgan SP, Crowe JA, Murphy E (2012) A user-centred approach to requirements elicitation in medical device development: a case study from a industry perspective. Appl Ergon 43:184–190CrossRefGoogle Scholar
  9. 9.
    Vincent CJ, Li Y, Blandford A (2014) Integration of human factors and ergonomics during medical device design and development: it’s all about communication. Appl Ergon 45:413–419CrossRefGoogle Scholar
  10. 10.
    Schmettow M, Schnittker R, Schraagen JM (2017) An extended protocol for usability validation of medical devices: research design and reference model. J Biomed Inf 69:99–114CrossRefGoogle Scholar
  11. 11.
    National Cancer Institute (2017) Anatomía de la mama femenina. Se muestran el pezón, la aréola, los ganglios linfáticos, los lóbulos, los lobulillos, los conductos y otras partes de la mama. https://www.cancer.gov/espanol/tipos/seno. Accessed 20 June 2017
  12. 12.
    National Cancer Institute (2017) El cáncer se disemina en el cuerpo de tres maneras. https://www.cancer.gov/espanol/tipos/seno/paciente/tratamiento-seno-pdq#section/_24. Accessed 17 June 2017
  13. 13.
    Hagedorn TJ, Grosse IR, Krishnamurty S (2015) A concept ideation framework for medical device design. J Biomed Inf 55:218–230CrossRefGoogle Scholar
  14. 14.
    Money A, Barnett J, Kuljis J, Craven M, Martin J, Young T (2011) The role of the user within the medical device design and development process: medical device manufacturers’ perspectives. BMC Med Inf Decis Mak 11:1CrossRefGoogle Scholar
  15. 15.
    Shah SGS, Robinson I (2007) Benefits of and barriers to involving users in medical device technology development and evaluation. Health Care 23:131–137Google Scholar
  16. 16.
    Clarkson P, Buckle P, Coleman R, Stubbs D, Ward J, Jarret J (2004) Design for patient safety: a review of the effectiveness design in the UK health service. J Eng Des 15:123–140CrossRefGoogle Scholar
  17. 17.
    Vincent CJ, Blandford A (2017) How do health service professionals consider human factors when purchasing interactive medical devices? A qualitative interview study. Appl Ergon 59:114–122CrossRefGoogle Scholar
  18. 18.
    Vincent C, Blanford A (2011) Designing for safety and usability: user-centered techniques in medical device design practice. In: Proceedings of the HdES 55th annual meeting. Sage, Las Vegas, pp 793–797Google Scholar
  19. 19.
    Furniss D, Masci P, Curzon P, Mayer A, Blandford A (2014) 7 Themes for guiding situated ergonomic assessments of medical devices: a case study of an inpatient glucometer. Appl Ergon 45:1667–1668CrossRefGoogle Scholar
  20. 20.
    Organización Mundial de la Salud, Noviembre 2013. http://www.who.int/mediacentre/factsheets/fs384/es/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pilar Hernandez-Grajeda
    • 1
  • Alberto Rossa-Sierra
    • 1
  • Gabriela Durán-Aguilar
    • 1
  1. 1.Facultad de IngenieríaUniversidad PanamericanaZapopanMexico

Personalised recommendations