Users’ Awareness of Alarm Settings

Analyzing the User Interface of a Physiological Monitor
  • Kathrin LangeEmail author
  • Armin Janß
  • Siyamak Farjoudi Manjili
  • Miriam Nowak
  • Wolfgang Lauer
  • Klaus Radermacher
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 818)


Whether or not a physiological monitor will issue an alarm in a certain condition depends largely on the particular settings of the device. To be able to safely use the monitor, the user has to be aware of these settings. We addressed a potential contribution of interface design to users’ awareness of devices settings by analyzing a monitor’s user interface. Based on a previous analysis of incident reports, we selected the following functions for further analysis: Deactivating individual alarms (SpO2), changing alarm limits (arhythmia), muting alarm volume and completely disabling the measurement of a particular parameter (blood pressure). We applied two different methods of assessing interface usability: an analytical approach supported by the formal-analytical method mAIXuse and an empirical approach, i.e. observing whether expert users in a simulated care setting were aware of the various causes underlying alarm failures. In the simulation study, seven experienced intensive care nurses took part. The mAIXuse analysis showed that detecting altered alarm limits, the muting of alarms and the disabled measurement should be somewhat less easy than detecting the deactivation of an alarm. With regard to comprehension, alarm limits and disabled measurement were judged to be inferior to muting and blocking of alarms. During the usability-test, not a single user identified the muted alarm and the altered alarm limits as potential causes for the absence of an audible alarm without being prompted. By contrast, three of seven nurses directly recognized that the SpO2 alarm was blocked. The results of the formal-analytical analysis and the simulation study will be compared and conclusions regarding the contribution of the monitor display to users’ awareness of alarm settings will be discussed.


Physiologic monitoring alarms User computer interface Awareness 


  1. 1.
    Diaper D, Stanton NA (2004) The handbook of task analysis for human–computer interaction. Lawrence Erlbaum Associates, LondonGoogle Scholar
  2. 2.
    Endsley MR (1996) Automation and situation awareness. In: Parasuraman R, Mouloua M (eds) Automation and human performance: theory and applications. Lawrence Erlbaum, Mahwah, pp 163–181Google Scholar
  3. 3.
    Endsley MR (1988) Design and evaluation for situation awareness enhancement. Proc Hum Factors Soc Annu Meet 32:97–101CrossRefGoogle Scholar
  4. 4.
    Endsley MR (2011) Designing for situation awareness: an approach to user-centered design. CRC Press, Boca RatonCrossRefGoogle Scholar
  5. 5.
    Janß A, Lauer W, Radermacher K (2009) Bewertung sicherheitskritischer Systeme im OperationssaalEvaluation of Risk-Sensitive Systems in the OR. i-com Zeitschrift für interaktive und kooperative Medien 8:32Google Scholar
  6. 6.
    Janß A, Radermacher K (2014) Usability first. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 57:1384–1392CrossRefGoogle Scholar
  7. 7.
    Kluwe RH (2006) Informationsaufnahme und Informationsverarbeitung. In: Zimolong B, Konradt U (eds) Ingenieurpsychologie. Hogrefe, Göttingen, pp 35–70Google Scholar
  8. 8.
    Lange K, Brinker A, Nowak M et al Patientengefährdungen durch Gerätediversität? Diskussion eines Risikofaktors anhand der Ergebnisse zweier Befragungen an deutschen Kliniken. Der Anästhesist (in press)Google Scholar
  9. 9.
    Lange K, Nowak M, Neudörfl C et al (2017) Umgang mit Patientenmonitoren und ihren Alarmen: Vorkommnismeldungen liefern Hinweise auf Probleme mit Gerätewissen. Zeitschrift für Evidenz Fortbildung und Qualität im Gesundheitswesen 125:14–22CrossRefGoogle Scholar
  10. 10.
    Lange K, Nowak M, Zoller R et al (2016) Boundary conditions for safe detection of clinical alarms: an observational study to identify the cognitive and perceptual demands on an Intensive Care Unit. In: de Waard D, Brookhuis KA, Toffetti A, Stuiver A, Weikert C, Coelho D, Manzey D, Ünal AB, Röttger S, Merat N (eds) Human factors & user experience in everyday life, medicine, and work. Proceedings of the human factors and ergonomics society Europe chapter 2015 annual conference. ISSN 2333-4959 (online), pp 195–208Google Scholar
  11. 11.
    Steelman KS, Mccarley JS, Wickens CD (2011) Modeling the control of attention in visual workspaces. Hum Factors 53:142–153CrossRefGoogle Scholar
  12. 12.
    Wickens CD (2015) Noticing events in the visual workplace: the SEEV and NSEEV models. In: Szalma JL, Scerbo MW, Hancock PA, Parasuraman R, Hoffman RR (eds) The Cambridge handbook of applied perception research. Cambridge University Press, Cambridge, pp 749–768CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal Institute for Drugs and Medical Devices [BfArM]BonnGermany
  2. 2.Chair of Medical Engineering in the Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations