Advertisement

A 3D Printed Thermal Manikin Head for Evaluating Helmets for Convective and Radiative Heat Loss

  • Shriram Mukunthan
  • Jochen Vleugels
  • Toon Huysmans
  • Tiago Sotto Mayor
  • Guido De Bruyne
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 824)

Abstract

Thermal performance of three bicycle helmets for radiative and convective heat loss was evaluated through heat loss experiments in a wind tunnel. A 3D printed thermal manikin head of a 50th percentile western male population was developed. Thermal performance of a helmet was quantified by comparing the manikin head heat losses with and without helmet. Experiments were performed for two air velocities: 1.6 m/s and 6 m/s. An infrared heat lamp positioned above the manikin simulated the effect of solar load. The results from the experiments showed a convective cooling efficiency between 89% and 96% for open helmets and between 78% and 83% for closed helmets. The radiative heat gain ranged from 3.5 W to 4.5 W for open helmets and 5 W to 8 W for closed helmets.

Keywords

Heat transfer Convective heat loss Radiative heat gain Thermal manikin head Wind tunnel Helmet thermal performance 

Notes

Acknowledgements

We acknowledge the support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645770”. Additionally, we also acknowledge the support from Flanders Innovation & Entrepreneurship (VLAIO) under grant agreement 140881 “Phyt: Physical and thermal comfort of helmets”.

References

  1. 1.
    Fife D, Barancik JI, Chatterjee BF (1984) North-eastern Ohio trauma study: ii, injury rates by age, sex, and cause. Am J Public Health 74:473–478CrossRefGoogle Scholar
  2. 2.
    Wood T, Milne P (1988) Head injuries to pedal cyclists and the promotion of helmet use in Victoria. Austral Accid Anal Prev 20:177–185CrossRefGoogle Scholar
  3. 3.
    Thompson RS, Rivara FP, Thompson DC (1989) A case control study of the effectiveness of bicycle safety helmets. New Engl J Med 320:1361–1367CrossRefGoogle Scholar
  4. 4.
    Attewell RG, Glase K, McFadden M (2001) Bicycle helmet efficacy: a meta-analysis. Accid Anal Prev 33(3):345–352CrossRefGoogle Scholar
  5. 5.
    Olivier J, Creighton P (2017) Bicycle injuries and helmet use: a systematic review and meta-analysis. Int J Epidemiol 46:278–292Google Scholar
  6. 6.
    Sacks JJ, Kresnow M, Houston B, Russell J (1996) Bicycle helmet use among American children. Inj Prev 2:258–262CrossRefGoogle Scholar
  7. 7.
    Villamor E, Hammer S, Martinez-Olaizola A (2008) Barriers to bicycle helmet use among Dutch pediatricians. Child Care Health Dev 34:743–747CrossRefGoogle Scholar
  8. 8.
    Bogerd CC, Aerts JM, Annaheim S, Bröde P, De Bruyne G, Flouris AD, Kuklane K, Mayor TS, Rossi RM (2015) Thermal effects of headgear: state-of-the-art and way forward. Extreme Physiol Med 4(1):A71Google Scholar
  9. 9.
    Servadei F, Begliomini C, Gardini E, Giustini M, Taggi F, Kraus J (2003) Effect of Italy’s motorcycle helmet law on traumatic brain injuries. Inj Prev 9:257–260CrossRefGoogle Scholar
  10. 10.
    Orsi C, Stendardo A, Marinoni A, Gilchrist MD, Otte D, Chliaoutakis J, Lajunen T, Özkan T, Pereira JD, Tzamalouka G, Morandi A (2012) Motorcycle riders’ perception of helmet use: complaints and dissatisfaction. Accid Anal Prev 44:111–117CrossRefGoogle Scholar
  11. 11.
    Papadakaki M, Tzamalouka G, Orsi C (2013) Barriers and facilitators of helmet use in a Greek sample of motorcycle riders: which evidence? Transp Res F Traffic Psychol Behav 18:189–198CrossRefGoogle Scholar
  12. 12.
    Lehmuskallio E, Lindholm H, Koskenvuo K, Sarna S, Friberg O, Viljanen A (1995) Frostbite of the face and ears: epidemiological study of risk factors in Finnish conscripts. BMJ 311:1661–1663CrossRefGoogle Scholar
  13. 13.
    De Bruyne G, Aerts JM, Vander Sloten J, Goffin J, Verpoest I, Berckmans D (2010) Transient sweat response of the human head during cycling. Int J Ind Ergon 40:406–413CrossRefGoogle Scholar
  14. 14.
    Taylor NAS, Machado-Moreira CA (2013) Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol Med 2:4CrossRefGoogle Scholar
  15. 15.
    Bain A, Deren T, Jay O (2011) Describing individual variation in local sweating during exercise in a temperate environment. Eur J Appl Physiol 111:1599–1607CrossRefGoogle Scholar
  16. 16.
    Abeysekera JDA, Holmér I, Dupuis C (1991) Heat transfer characteristics of industrial safety helmets. In: Kumashiro M, Megaw ED (eds) Towards human work - solutions to practical problems in occupational health and safety. Taylor & Francis, London, pp 297–303Google Scholar
  17. 17.
    Brühwiler PA (2003) Heated, perspiring manikin headform for the measurement of headgear ventilation characteristics. Meas Sci Technol 14:217–227CrossRefGoogle Scholar
  18. 18.
    Coment E, Batsale J.-C, Ladevie B, Caillibotte (2000) Cartography and ventilation index for bicycle helmets. In: 9th International conference on environmental ergonomics. Dortmund, Germany, pp 369–374Google Scholar
  19. 19.
    Liu X, Holmer I (1995) Evaporative heat transfer characteristics of industrial safety helmets. Appl Ergon 26:135–140CrossRefGoogle Scholar
  20. 20.
    Hsu YL, Tai CY, Chen TC (2000) Improving thermal properties of industrial safety helmets. Int J Ind Ergon 26:109–117CrossRefGoogle Scholar
  21. 21.
    Reischl U (1986) Fire fighter helmet ventilation analysis. Am Ind Hyg Assoc J 47:546–551CrossRefGoogle Scholar
  22. 22.
    Bogerd CP, Brühwiler PA (2008) The role of head tilt, hair and wind speed on forced convective heat loss through full-face motorcycle helmets: a thermal manikin study. Int J Ind Ergon 38:346–353CrossRefGoogle Scholar
  23. 23.
    De Bruyne G, Aerts JM, Vander Sloten J, Goffin J, Verpoest I, Berckmans D (2012) Quantification of local ventilation efficiency under bicycle helmets. Int J Ind Ergon 42:278–286CrossRefGoogle Scholar
  24. 24.
    Brühwiler PA (2003) Heated, perspiring manikin headform for the measurement of headgear ventilation characteristics. Meas Sci Technol 14:217–227CrossRefGoogle Scholar
  25. 25.
    Brühwiler PA (2008) Radiant heat transfer of bicycle helmets and visors. J Sports Sci 26:1025–1031CrossRefGoogle Scholar
  26. 26.
    Bogerd C, Rossi R, Brühwiler P (2011) Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study. Ann Occup Hyg 55:192–201Google Scholar
  27. 27.
    Brühwiler PA, Ducas C, Huber R, Bishop PA (2004) Bicycle helmet ventilation and comfort angle dependence. Eur J Appl Physiol 92:698–701CrossRefGoogle Scholar
  28. 28.
    Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192CrossRefGoogle Scholar
  29. 29.
    Rugh JP, Farrington RB, Bharathan D, Vlahinos A, Burke R, Huizenga C, Zhang H (2004) Predicting human thermal comfort in a transient nonuniform thermal environment. Eur J Appl Physiol 92:721–727CrossRefGoogle Scholar
  30. 30.
    Burke R, Curran A, Hepokoski M (2009) Integrating an active physiological and comfort model to the newton sweating thermal manikin. In: 13th International conference on environmental ergonomics. Boston, USAGoogle Scholar
  31. 31.
    Foda E, Siren K (2012) A thermal manikin with human thermoregulatory control: implementation and validation. Int J Biometeorol 56:959–971CrossRefGoogle Scholar
  32. 32.
    Lacko D, Huysmans T, Parizel PM, De Bruyne G, Verwulgen S, Van Hulle MM, Sijbers J (2015) Evaluation of an anthropometric shape model of the human scalp. Appl Ergon Hum Factors Technol Soc 70–85Google Scholar
  33. 33.
    Gavhed D, Mäkinen T, Holmér I, Rintämaki H (2000) Face temperature and cardio-respiratory responses to wind in thermoneutral and cool subjects exposed to –10 °C. Eur J Appl Physiol 83:449–456CrossRefGoogle Scholar
  34. 34.
    Bogers CP, Aerts JM, Annaheim S, Bröde P, De Bruyne G, Flouris AD, Kuklane K, Mayor TS, Rossi RM (2015) A review on ergonomics of headgear: Thermal effects. Int J Ind Ergon 1–12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shriram Mukunthan
    • 1
  • Jochen Vleugels
    • 1
  • Toon Huysmans
    • 2
    • 3
  • Tiago Sotto Mayor
    • 4
  • Guido De Bruyne
    • 1
    • 5
  1. 1.Product Development, Faculty of Design SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Vision Lab, Department of PhysicsUniversity of Antwerp (CDE)AntwerpBelgium
  3. 3.Applied Ergonomics and Design, Department of Industrial DesignDelft University of TechnologyDelftThe Netherlands
  4. 4.SIMTECH Laboratory, Transport Phenomena Research Centre, Engineering Faculty of Porto UniversityPortoPortugal
  5. 5.Lazer Sport NVAntwerpBelgium

Personalised recommendations