Proposal of a Methodological Model for the Design of a Complex Dynamic Working Environment in the Forestry Sector, to Generate an Emotionally Light Habitat

  • Jimena Alarcón CastroEmail author
  • Fabiola Maureira
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 824)


The research is aimed at proposing a methodological model for the design of a complex dynamic working environment in the forest sector, incorporating methods derived from affective engineering, to generate an emotionally light work environment. The research scenario corresponds to the coordination and control centers of forest fires in Chile. The optimization of the conditions of the space and its content, could contribute to improve the performance required for efficient and harmonious decision making in demanding situations. Unfortunately, their operators have not been involved into the design process of their work environment, even though they are the ones who know best about the functional and emotional benefits required. The methodological approach includes an active operators participation by the application of methods and instruments specific to affective engineering to capture the emotions of individuals in front of simultaneous and varied stimuli, the use of technological equipment to diagnose and define the characteristics of the space and the objects that appear in it, design of proposals, evaluation of the proposals by the users, final proposal design and user studies. The novelty of this research is the possibility of defining a methodological model based on the study of dynamic environments, generating as a result a proposal that contributes both directly into this field and to the theoretical and empirical basis built by the international scientific community.


Affective engineering Forestry sector Methodological model 


  1. 1.
    Alesina I, Lupton E (2010) Exploring materials: creative design for everyday objets. Princeton Architectural Press, Nueva YorkGoogle Scholar
  2. 2.
    Barrera D (2017) Emergencia incendios forestales 2017. Oficina de Estudios y Políticas Agrarias, Santiago de Chile. F:/2018/ENSOSP%20JUIN/incendios2017.pdf. Accessed 21 May 2018Google Scholar
  3. 3.
    Bedolla D (2002) Diseño sensorial. Las nuevas pautas para la innovación, especialización y personalización del producto. Tesis doctoral Universidad Politécnica de Cataluña, Barcelona, 369Google Scholar
  4. 4.
    Blanchot M (1992) El espacio literario. Paidós Ibérica, BarcelonaGoogle Scholar
  5. 5.
    Caroly S, Barchellini F (2013) Le développement de l’activité collective. In: Falzon P (ed) Ergonomie constructive. PUF, Paris, pp 33–46CrossRefGoogle Scholar
  6. 6.
    Cellier JM, Eyrolle H, Marine C (1997) Expertise in dynamic environments. Ergonomics 40(1):28–50CrossRefGoogle Scholar
  7. 7.
    Centro Tecnológico para el Diseño y la Producción Industrial de Asturias [Prodintec] (2011). Diseño Afectivo e Ingeniería Kansei, Guía Metodológica. Fundación Prodintec, GijónGoogle Scholar
  8. 8.
    Corporación Nacional Forestal [CONAF]: CUENTA PÚBLICA PARTICIPATIVA Corporación Nacional Forestal 2014–2016 (2016). Santiago de Chile: Ministerio de Agricultura. Accessed 17 May 2018
  9. 9.
    Desmet P, Hekkert P (2009) Design & emotion. Int J Des 3(2):1–6Google Scholar
  10. 10.
    Hoc JM, Amalberti R, Cellier JM, Grosjean M (2004) Adaptation et gestion des risques en situation dynamique. In: Hoc JM, Darses F (eds) Psycologie ergonomique: tendences actuelles. Presses Universitaires de France, Paris, pp 15–48Google Scholar
  11. 11.
    Lucas R, Diener E, Larsen R (2003) Measuring positive emotions In: Lopez SJ, Snyder CR, (eds) Positive psychological assessment. A handbook of models and measures. American Psychological Association, WashingtonGoogle Scholar
  12. 12.
    Nagamachi M (1995) Kansei engineering: a new ergonomic consumer-oriented technology for product development. Int J Ind Ergon 15:3–11CrossRefGoogle Scholar
  13. 13.
    Mehrabian A (1976) Public places and private spaces: the psychology of work, play, and living environments. Basic Books, Nueva YorkGoogle Scholar
  14. 14.
    Milton A, Rodgers P (2013) Métodos de Investigación para el Diseño de Producto. Blume, Barcelona, p 70Google Scholar
  15. 15.
    Pavard B (2000) Apport des théories de la complexité à l’étude des systèmes coopératifs. In: Benchekroun TH, Weill-Fassina A (eds) Le travail collectif. Perspectives actuelles en ergonomie. Octarès, Toulouse, pp 19–33Google Scholar
  16. 16.
    Pavard B, Dugdale J (2006) The contribution of complexity theory to the study of socio-technical cooperative systems. In: Minai AA, Bar-Yam Y (eds) Unifying themes in complex systems. Springer, Heidelberg, pp 39–48. Scholar
  17. 17.
    Pavard B, Dugdale J, Bellamine-Ben Saoud N, Darcy S, Salambier P (2009) Conception de systèmes socio-technique robustes. In: De Terssac G, Boissières I, Gaillard I (eds) La sécurité en action. Octarès, Toulouse, pp 67–80Google Scholar
  18. 18.
    Rogalski J (2005) Dialectique entre processus de conceptualisation, processus de transposition didactique de situations professionnelles et analyse de l’activité. In: Pastré P, Rabardel P (eds) Apprendre par simulation. Octarès, Toulouse, pp 311–334Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad del Bío-BíoConcepciónChile
  2. 2.Universidad de ConcepciónConcepciónChile

Personalised recommendations