Cerebral Venous Collateral Circulation

  • Lu-Sha Tong
  • Yan-nan Yu
  • Jiping Tang
  • Min Lou
  • John H. Zhang
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


For a long time, the cerebral venous collateral has been far less concerned than arterial counterparts. It is not until latter part of twentieth century, has adequate venous schematic description been provided. In this chapter, we compared the traditional classification the cerebral venous system, and proposed a novel cerebral venous collateral circulation system attributed to the new findings in cerebral diseases.


Cerebral veins Collateral circulation Venous regulation 


  1. 1.
    Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.CrossRefGoogle Scholar
  2. 2.
    Andeweg J. The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology. 1996;38(7):621–8.CrossRefGoogle Scholar
  3. 3.
    Andeweg J. Consequences of the anatomy of deep venous outflow from the brain. Neuroradiology. 1999;41(4):233–41.CrossRefGoogle Scholar
  4. 4.
    Kilic T, Akakin A. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci. 2008;23:4–15.CrossRefGoogle Scholar
  5. 5.
    Rhoton AL Jr. The cerebral veins. Neurosurgery. 2002;51(4 Suppl):S159–205.PubMedGoogle Scholar
  6. 6.
    Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46(3):243–60.CrossRefGoogle Scholar
  7. 7.
    Cullen S, Demengie F, Ozanne A, Alvarez H, Mercier PH, Brassier G, et al. The anastomotic venous circle of the base of the brain. Interv Neuroradiol. 2005;11(4):325–32.CrossRefGoogle Scholar
  8. 8.
    Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery. 1985;17(4):663–78.CrossRefGoogle Scholar
  9. 9.
    Qureshi AI. A classification scheme for assessing recanalization and collateral formation following cerebral venous thrombosis. J Vasc Interv Neurol. 2010;3(1):1–2.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferro JM, Bacelar-Nicolau H, Rodrigues T, Bacelar-Nicolau L, Canhao P, Crassard I, et al. Risk score to predict the outcome of patients with cerebral vein and dural sinus thrombosis. Cerebrovasc Dis. 2009;28(1):39–44.CrossRefGoogle Scholar
  11. 11.
    Vollono C, Tartaglione T, Della Marca G. Teaching neuroimages: chronic sinus thrombosis with patency of occipital and falcine cerebral venous sinuses. Neurology. 2016;87(6):e58–9.PubMedGoogle Scholar
  12. 12.
    Munuera J, Blasco G, Hernandez-Perez M, Daunis IEP. Venous imaging-based biomarkers in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2017;88(1):62–9.CrossRefGoogle Scholar
  13. 13.
    Padget DH. The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. Am J Anat. 1956;98(3):307–55.CrossRefGoogle Scholar
  14. 14.
    Gustafsson O, Rossitti S. Intracranial pressure is a fraction of arterial blood pressure. Eur J Neurol. 1995;2(1):31–7.CrossRefGoogle Scholar
  15. 15.
    Heistad DD, Marcus ML, Said SI, Gross PM. Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am J Phys. 1980;239(1):H73–80.Google Scholar
  16. 16.
    Hassler O. Deep cerebral venous system in man. A microangiographic study on its areas of drainage and its anastomoses with the superficial cerebral veins. Neurology. 1966;16(5):505–11.CrossRefGoogle Scholar
  17. 17.
    Yu X, Yuan L. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol. 2016;37(3):423–9.CrossRefGoogle Scholar
  18. 18.
    Liebeskind DS. Collateral perfusion: time for novel paradigms in cerebral ischemia. Int J Stroke. 2012;7(4):309–10.CrossRefGoogle Scholar
  19. 19.
    Liebeskind DS, Feldmann E. Imaging of cerebrovascular disorders: precision medicine and the collaterome. Ann N Y Acad Sci. 2016;1366:40.CrossRefGoogle Scholar
  20. 20.
    Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, et al. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke. 2014;45(3):759–64.CrossRefGoogle Scholar
  21. 21.
    Pomschar A, Koerte I, Lee S, Laubender RP, Straube A, Heinen F, et al. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS One. 2013;8(2):e55447.CrossRefGoogle Scholar
  22. 22.
    Farrar MJ, Rubin JD, Diago DM, Schaffer CB. Characterization of blood flow in the mouse dorsal spinal venous system before and after dorsal spinal vein occlusion. J Cereb Blood Flow Metab. 2015;35(4):667–75.CrossRefGoogle Scholar
  23. 23.
    Chung CP, Wang PN, Wu YH, Tsao YC, Sheng WY, Lin KN, et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol. 2011;69(3):553–9.CrossRefGoogle Scholar
  24. 24.
    Sethi SK, Utriainen DT, Daugherty AM, Feng W, Hewett JJ, Raz N, et al. Jugular venous flow abnormalities in multiple sclerosis patients compared to normal controls. J Neuroimaging. 2015;25(4):600–7.CrossRefGoogle Scholar
  25. 25.
    Kaplan HA. Collateral circulation of the brain. Neurology. 1961;11(4 Pt 2):9–15.CrossRefGoogle Scholar
  26. 26.
    Luce JM, Huseby JS, Kirk W, Butler JA. Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(6):1496–503.PubMedGoogle Scholar
  27. 27.
    Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am J Physiol Heart Circ Physiol. 2013;304(8):H1077–84.CrossRefGoogle Scholar
  28. 28.
    Faber JE, Chilian WM, Deindl E, van Royen N, Simons M. A brief etymology of the collateral circulation. Arterioscler Thromb Vasc Biol. 2014;34(9):1854–9.CrossRefGoogle Scholar
  29. 29.
    Sbarbati A, Pietra C, Baldassarri AM, Guerrini U, Ziviani L, Reggiani A, et al. The microvascular system in ischemic cortical lesions. Acta Neuropathol. 1996;92(1):56–63.CrossRefGoogle Scholar
  30. 30.
    Knowlton FP, Starling EH. The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol. 1912;44(3):206–19.CrossRefGoogle Scholar
  31. 31.
    Lofgren J. Effects of variations in arterial pressure and arterial carbon dioxide tension on the cerebrospinal fluid pressure-volume relationships. Acta Neurol Scand. 1973;49(5):586–98.CrossRefGoogle Scholar
  32. 32.
    Hallenbeck JM, Bradley ME. Experimental model for systematic study of impaired microvascular reperfusion. Stroke. 1977;8(2):238–43.CrossRefGoogle Scholar
  33. 33.
    Permutt S, Riley RL. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.CrossRefGoogle Scholar
  34. 34.
    Johnston IH, Rowan JO. Raised intracranial pressure and cerebral blood flow. 3. Venous outflow tract pressures and vascular resistances in experimental intracranial hypertension. J Neurol Neurosurg Psychiatry. 1974;37(4):392–402.CrossRefGoogle Scholar
  35. 35.
    Yada K, Nakagawa Y, Tsuru M. Circulatory disturbance of the venous system during experimental intracranial hypertension. J Neurosurg. 1973;39(6):723–9.CrossRefGoogle Scholar
  36. 36.
    Yamashima T, Friede RL. Why do bridging veins rupture into the virtual subdural space? J Neurol Neurosurg Psychiatry. 1984;47(2):121–7.CrossRefGoogle Scholar
  37. 37.
    Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67(1):209–20.CrossRefGoogle Scholar
  38. 38.
    Rossitti S. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: the hydraulic hypothesis. Surg Neurol Int. 2013;4:42.CrossRefGoogle Scholar
  39. 39.
    Chen J, Wang XM, Luan LM, Chao BT, Pang B, Song H, et al. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension. Chin Med J. 2012;125(7):1303–9.PubMedGoogle Scholar
  40. 40.
    Si Z, Luan L, Kong D, Zhao G, Wang H, Zhang K, et al. MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res. 2008;13(3):121–6.PubMedGoogle Scholar
  41. 41.
    Chen S, Chen Y, Xu L, Matei N, Tang J, Feng H, et al. Venous system in acute brain injury: mechanisms of pathophysiological change and function. Exp Neurol. 2015;272:4.CrossRefGoogle Scholar
  42. 42.
    Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology. 2008;55(3):281–8.CrossRefGoogle Scholar
  43. 43.
    Edvinsson L, Hogestatt ED, Uddman R, Auer LM. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J Cereb Blood Flow Metab. 1983;3(2):226–30.CrossRefGoogle Scholar
  44. 44.
    Mayhan WG, Werber AH, Heistad DD. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy. Circulation. 1987;75(1 Pt 2):I107–12.PubMedGoogle Scholar
  45. 45.
    Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg. 1990;73(1):82–90.CrossRefGoogle Scholar
  46. 46.
    Auer LM, Trummer UG, Johansson BB. Alpha-adrenoreceptor antagonists and pial vessel diameter during hypercapnia and hemorrhagic hypotension in the cat. Stroke. 1981;12(6):847–51.CrossRefGoogle Scholar
  47. 47.
    Auer LM, Johansson BB. Cervical sympathetic nerve stimulation decreases intracranial pressure in the cat. Acta Physiol Scand. 1981;113(4):565–6.CrossRefGoogle Scholar
  48. 48.
    Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986;59(2):216–20.CrossRefGoogle Scholar
  49. 49.
    Min KJ, Yoon SH, Kang JK. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy. Med Hypotheses. 2011;76(6):884–6.CrossRefGoogle Scholar
  50. 50.
    Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54(3):483–91.CrossRefGoogle Scholar
  51. 51.
    Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med. 2013;11:142.CrossRefGoogle Scholar
  52. 52.
    Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology. 2008;50(6):491–7.CrossRefGoogle Scholar
  53. 53.
    Sekhar LN, Chanda A, Morita A. The preservation and reconstruction of cerebral veins and sinuses. J Clin Neurosci. 2002;9(4):391–9.CrossRefGoogle Scholar
  54. 54.
    Ferroli P, Nakaji P, Acerbi F, Albanese E, Broggi G. Indocyanine green (ICG) temporary clipping test to assess collateral circulation before venous sacrifice. World Neurosurg. 2011;75(1):122–5.CrossRefGoogle Scholar
  55. 55.
    Asgari S, Bassiouni H, Hunold A, Klassen D, Stolke D, Sandalcioglu IE. Extensive brain swelling with neurological deterioration after intracranial meningioma surgery—venous complication or ‘unspecific’ increase in tissue permeability. Zentralbl Neurochir. 2008;69(1):22–9.CrossRefGoogle Scholar
  56. 56.
    Higgins JN, Burnet NG, Schwindack CF, Waters A. Severe brain edema caused by a meningioma obstructing cerebral venous outflow and treated with venous sinus stenting. Case report. J Neurosurg. 2008;108(2):372–6.CrossRefGoogle Scholar
  57. 57.
    Rost NS. Stroke: more than meets the eye[mdash]big consequences of small strokes. Nat Rev Neurol. 2015;11(5):249–50.CrossRefGoogle Scholar
  58. 58.
    van der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WP, van der Graaf Y, et al. Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. Stroke. 2015;46(5):1233–8.CrossRefGoogle Scholar
  59. 59.
    Black S, Gao F, Bilbao J. Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke. 2009;40(3 Suppl):S48–52.CrossRefGoogle Scholar
  60. 60.
    Yan S, Wan J, Zhang X, Tong L, Zhao S, Sun J, et al. Increased visibility of deep medullary veins in leukoaraiosis: a 3-T MRI study. Front Aging Neurosci. 2014;6:144.CrossRefGoogle Scholar
  61. 61.
    Tateishi Y, Wisco D, Aoki J, George P, Katzan I, Toth G, et al. Large deep white matter lesions may predict futile recanalization in endovascular therapy for acute ischemic stroke. Interv Neurol. 2015;3(1):48–55.CrossRefGoogle Scholar
  62. 62.
    Zivadinov R, Chung CP. Potential involvement of the extracranial venous system in central nervous system disorders and aging. BMC Med. 2013;11:260.CrossRefGoogle Scholar
  63. 63.
    Han K, Chao AC, Chang FC, Hsu HY, Chung CP, Sheng WY, et al. Diagnosis of transverse sinus hypoplasia in magnetic resonance venography: new insights based on magnetic resonance imaging in combined dataset of venous outflow impairment case-control studies: post hoc case-control study. Medicine. 2016;95(10):e2862.CrossRefGoogle Scholar
  64. 64.
    Muir KW, Macrae IM. Neuroimaging as a selection tool and endpoint in clinical and pre-clinical trials. Transl Stroke Res. 2016;7(5):368–77.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Lu-Sha Tong
    • 1
    • 2
  • Yan-nan Yu
    • 1
  • Jiping Tang
    • 2
  • Min Lou
    • 1
  • John H. Zhang
    • 2
  1. 1.Department of NeurologyThe Second Affiliated Hospital of School of Medicine, Zhejiang UniversityHangzhouChina
  2. 2.Department of Anesthesiology and PhysiologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations