Advertisement

Imaging of Cerebral Vein in Acute Brain Injury

  • Xiaocheng Zhang
  • Min Lou
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Acute brain injury (ABI) usually causes long-term disability and a high mortality. During ABI, cerebral autoregulation is affected, and the harmony of cerebral circulation is interrupted. As venous system contains nearly 70–80% of the circulatory volume inside the inflexible cranial cavity and is more susceptible to the elevation of intracranial pressure than the arterial system, almost all kinds of ABI can present with changes in cerebral venous system. With the development of venous imaging and increased use of high resolution imaging protocols, understanding of venous structure, morphology and metabolism has become feasible and important, which may provide critical information for clinical diagnosing and prognosis prediction in ABI. In this chapter, we summarized the features found on venous imaging related to ABI, and discussed their clinical significance.

Keywords

Cerebral veins Stroke Neuroimaging 

References

  1. 1.
    Cihangiroglu M, Ozdemir H, Kalender O, Ozveren F, Kabaalioglu A. Transverse sinus air after cranial trauma. Eur J Radiol. 2003;48(2):171–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Orebaugh SL, Margolis JH. Post-traumatic intracerebral pneumatocele: case report. J Trauma. 1990;30(12):1577–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Rubinstein D, Dangleis K, Damiano TR. Venous air emboli identified on head and neck CT scans. J Comput Assist Tomogr. 1996;20:559.PubMedCrossRefGoogle Scholar
  4. 4.
    Santhosh K, Kesavadas C, Thomas B, et al. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol. 2009;64(1):74–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Zaitsu Y, Kudo K, Terae S, et al. Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology. 2011;261(3):930–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Doshi H, Wiseman N, Liu J, Wang W, Welch RD, O’Neil BJ. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One. 2015;10(7):e0118061.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen SF, Richards HK, Smielewski P, Johnstrom P, Salvador R, et al. Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2004;24:1025–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Prins ML, Lee SM, Fujima LS, Hovda DA. Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. J Neurochem. 2004;90:666–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Yilmaz U, Korner H, Meyer S, Reith W. Multifocal signal loss at bridging veins on susceptibility-weighted imaging in Abusive head trauma. Clin Neuroradiol. 2015;25(2):181–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Leeds NE, Reid ND, Rosen LM. Angiographic changes in cerebral contusions and intracerebral hematomas. Acta Radiol Diagn. 1966;5:320.CrossRefGoogle Scholar
  12. 12.
    Glickman MG, Mainzer F, Gletne JS. Early venous opacification in cerebral contusion. Radiology. 1971;100(3):615.PubMedCrossRefGoogle Scholar
  13. 13.
    Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet. 1966;2:1113–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Langfitt TW, Weinstein JD, Kassell NF. Vascular factors in head injury; contribution to brain swelling and intracranial hypertension. In: Caveness WF, Walker AE, editors. Head injury: conference proceedings, 1966. Philadelphia: Lippincott; 1966, p. 172–94.Google Scholar
  15. 15.
    Alsafi A, Lakhani A, Jones LC, Lobotesis K. Cerebral venous sinus thrombosis, a nonenhanced CT diagnosis? Radiol Res Pract. 2015;2015:581437.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Black DF, Rad AE, Gray LA, Campeau NG, Kallmes DF. Cerebral venous sinus density on noncomtrast CT correlates with hematocrit. AJNR Am J Neuroradiol. 2011;32(7):1354–13571.PubMedCrossRefGoogle Scholar
  17. 17.
    Verhoeff FH, Brabin BJ, Masache P, Kachale B, Kazembe P, Van der Kaay HJ. Parasitological and haematological responses to treatment of Plasmodium falciparum malaria with sulphadoxine-pyrimethamine in southern Malawi. Ann Trop Med Parasitol. 1997;91(2):133–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh S, Ramakrishnaiah RH, Hegde SV, Glasier CM. Compression of the posterior fossa venous sinuses by epidural hemorrhage simulating venous sinus thrombosis: CT and MR findings. Pediatr Radiol. 2016;46(1):67–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Poon CS, Chang JK, Swarnkar A, Johnson MH, Wasenko J. Radiologic diagnosis of cerebral venous thrombosis: pictotial review. AJR Am J Roentgenol. 2007;89:S64–75.CrossRefGoogle Scholar
  20. 20.
    Wetzel SG, Kirsch E, Stock KW, et al. Cerebral veins: comparative study of CT venography with intraarterial digital subtraction angiography. AJNR Am J Neuroradiol. 1999;20(2):249–55.PubMedGoogle Scholar
  21. 21.
    Battal B, Castillo M. Brain herniations into the dural venous sinuses or calvarium: MRI of a recently recognized entity. Neuroradiol J. 2014;27(1):55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Leach JL, Fortuna RB, Jones BV, et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19–41 [discussion: S42–3].PubMedCrossRefGoogle Scholar
  23. 23.
    Macchi PJ, Grossman RI, Gomori JM, Goldberg HI, Zimmerman RA, Bilaniuk LT. High field MR imaging of cerebral venous thrombosis. J Comput Assist Tomogr. 1986;10(1):10–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Dormont D, Anxionnant R, Evrard S, Louaille C, Chiras J, Marsault C. MRI in cerebral venous thrombosis. J Neuroradiol. 1994;21(2):81–99.PubMedGoogle Scholar
  25. 25.
    Provenzale JM, Joseph G, Barboriak D. Dural sinus thrombosis: findings on CT and MR imaging and diagnostic pitfalls. AJR Am J Roentgenol. 1998;170:777–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Leach JL, Bluas RV, Ernst RJ, et al. MR imaging of isolated cortical vein thrombosis: the hyperintense vein sign. J Neurovasc Dis. 1996;1:1–7.Google Scholar
  27. 27.
    Thamburaj K, Choudhary A. Hyperintense vessel sign: isolated cortical venous thrombosis after l-asparaginase therapy. Pediatr Radiol. 2009;39:757.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsuruda JS, Shimakawa A, Pelc NJ, et al. Dural sinus occlusion: evaluation with phase-sensitive gradient-echo MR imaging. AJNR Am J Neuroradiol. 1991;12:481–8.PubMedGoogle Scholar
  29. 29.
    Hahnemann ML, Kinner S, Schweiger B, Bajanowski T, Karger B, Pfeiffer H, et al. Imaging of bridging vein thrombosis in infants with abusive head trauma: the “Tadpole Sign”. Eur Radiol. 2015;25(2):299–305.PubMedCrossRefGoogle Scholar
  30. 30.
    Mullins ME, Grant PE, Wang B, Gonzales RG, Schaefer PW. Parenchymal abnormalities associated with cerebral venous thrombosis: assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2004;25(10):1666–75.PubMedGoogle Scholar
  31. 31.
    Keller P. Time-of-flight magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:639–56.Google Scholar
  32. 32.
    Dumoulin C. Phase-contrast magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:657–76.Google Scholar
  33. 33.
    Melhem ER, Jara H, Yucel EK. Black blood MR angiography using multislab three-dimensional T1-weighted turbo spin-echo technique: imaging of intracranial circulation. AJR Am J Roentgenol. 1997;169:1418–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Turski P, Korosec F. Technical features and emerging clinical applications of phase-contrast magnetic resonance angiography. Neuroimaging Clin N Am. 1992;2:785–800.Google Scholar
  35. 35.
    Reichenbach JR, Jonetz-Mentzel L, Fitzek C, Haacke EM, Kido DK, Lee BCP, Kaiser WA. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology. 2001;43:364–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang Q, Duan JG, Fan ZY, Qu XF, Xie YB, Nguyen C, et al. Early detection and quantification of cerebral venous thrombosis by magnetic resonance black-blood thrombus imaging. Stroke. 2016;47(2):404–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Willinsky RA. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227(2):522–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Saposnik G, Barinagarrementeria F, Brown RDJ, et al. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(4):1158–92.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stolz E, Kaps M, Dorndorf W. Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke. 1999;30(1):70–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Wardlaw JM, Vaughan GT, Steers AJW, Sellar RJ. Transcranial Doppler ultrasound findings in cerebral venous sinus thrombosis. J Neurosurg. 1994;80:332–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Canhão P, Batista P, Ferro JM. Venous transcranial Doppler in acute dural sinus thrombosis. J Neurol. 1998;245:276–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Valdueza JM, Schultz M, Harms L, Einhäupl KM. Venous transcranial Doppler ultrasound monitoring in acute dural sinus thrombosis: report of two cases. Stroke. 1995;26:1196–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Becker G, Bogdahn U, Gehlberg C, Fröhlich T, Hofmann E, Schlief R. Transcranial color-coded real-time sonography of intracranial veins: normal values of blood flow velocities and findings in superior sagittal sinus thrombosis. J Neuroimaging. 1995;5:87–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Kokkinis C, Vlychou M, Zavras GM, Hadjigeorgiou GM, Papadimitriou A, Fezoulidis IV. The role of 3D-computed tomography angiography (3D-CTA) in investigation of spontaneous subarachnoid haemorrhage: comparison with digital subtraction angiography (DSA) and surgical findings. Br J Neurosurg. 2008;22(1):71–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamakawa H, Ohe N, Yano H, Yoshimura S, Iwama T. Venous drainage patterns in perimesencephalic nonaneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2008;110(6):587–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Alen JF, Lagares A, Campollo J, Ballenilla F, Kaen A, Nunez AP, et al. Idiopathic subarachnoid hemorrhage and venous drainage: are they related? Neurosurgery. 2008;63(6):1106–11; discussion 11-2.PubMedCrossRefGoogle Scholar
  47. 47.
    Watanabe A, Hirano K, Kamada M, Imamura K, Ishii N, Sekihara Y, et al. Perimesencephalic nonaneurysmal subarachnoid hemorrhage and variations in the veins. Neuroradiology. 2002;44:319–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Shad A, Rourke TJ, Jahromi AH, Green AL. Straight sinus stenosis as a proposed cause of perimesencephalic non-aneurysmal haemorrhage. J Clin Neurosci. 2008;15(7):839–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, et al. Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience. 2016;316:53–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Shastri M, Trivedi S, Rana K, Patel D, Tripathi R, Patell R. Cortical venous thrombosis presenting with subarachnoid haemorrhage. Australas Med J. 2015;8(5):148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mursch K, Wachter A, Radke K, Buhre W, Al-Sufi S, Munzel U, et al. Blood flow velocities in the basal vein after subarachnoid haemorrhage a prospective study using transcranial duplex sonography. Acta Neurochir. 2001;143(8):793–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsuda M, Shiino A, Handa J. Sequential-changes of cerebral blood-flow after aneurysmal subarachnoid hemorrhage. Acta Neurochir. 1990;105(3-4):98–106.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwarzmaier SM, Kim SW, Trabold R, et al. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Woringer E, Baumgartner J, Braun J. Sign of early local-regional venous opacification during rapid carotid serio-angiography. Acta Radiol. 1958;50(1-2):125–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Cronqvist S, Laroche F. Transitory hyperaemia in focal cerebral vascular lesions studied by angiography and regional cerebral blood flow measurements. Br J Radiol. 1967;40(472):270–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Taveras J, Gilson J, Davis D, Kilgore B, Rumbaugh C. Angiography in cerebral infarction. Radiology. 1969;93(3):549–58.PubMedCrossRefGoogle Scholar
  57. 57.
    Ohta H, Nakano S, Yokogami K, Iseda T, Yoneyama T, Wakisaka S. Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: a predictive sign for hemorrhagic complications. Stroke. 2004;35(4):893–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Olsen TS, Skriver EB, Herning M. Radiologic manifestations of focal cerebral hyperemia in acute stroke. Acta Radiol. 1991;32(2):100–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Dorn F, Kuntze-Soderqvist A, Popp S, Lockau H, Haller B, Zimmer C, et al. Early venous drainage after successful endovascular recanalization in ischemic stroke—a predictor for final infarct volume? Neuroradiology. 2012;54(7):745–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Yu W, Rives J, Welch B, White J, Stehel E, Samson D. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke. 2009;40(12):3736–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lassen NA. Control of cerebral circulation in health and disease. Circ Res. 1974;34(6):749–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscle and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg. 1990;73:82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang Z, Deng X, Dai Z, Chen B, Gao B, Xia C, Chen D, Han H. MRI image of the internal cerebral vein and basilar artery of rabbit following subarachnoid hemorrhage. Chin J Anat. 2012;35:137–41.Google Scholar
  64. 64.
    Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.PubMedCrossRefGoogle Scholar
  65. 65.
    Larsen CC, Hansen-Schwartz J, Nielsen JD, Astrup J. Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage. Acta Neurochir. 2010;152(9):1577–81; discussion 81.PubMedCrossRefGoogle Scholar
  66. 66.
    Ostergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33(12):1825–37.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kim HJ, Lee CH, Lee SH. Early development of vasogenic edema in experimental cerebral fat embolism in cats. Investig Radiol. 2001;36:460–9.CrossRefGoogle Scholar
  68. 68.
    Kim YW, Kim HJ, Choi SH, Kim DC. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol. 2014;55(8):1008–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke. 2004;35(8):1989–94.PubMedCrossRefGoogle Scholar
  71. 71.
    Tsui YK, Tsai FY, Hasso AN, Greensite F, Nguyen BV. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci. 2009;287(1-2):7–16.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sun W, Liu W, Zhang Z, et al. Asymmetrical cortical vessel sign on susceptibility-weighted imaging: a novel imaging marker for early neurological deterioration and unfavorable prognosis. Eur J Neurol. 2014;21(11):1411–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One. 2015;10(6):e0131118.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Souza LCS, Yoo AJ, Chaudhry ZA, Payabvash S, Kemmling A, Schaefer PW, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. Am J Neuroradiol. 2012;33(7):1331–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Verma RK, Hsieh K, Gratz PP, Schankath AC, Mordasini P, Zubler C, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol. 2014;83(8):1448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Baik SK, Choi W, Oh SJ, Park KP, Park MG, Yang TI, et al. Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis. 2012;34(3):206–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Xia S, Utriainen D, Tang J, Kou Z, Zheng G, Wang X, et al. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging. 2014;32(10):1272–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Horie N, Morikawa M, Nozaki A, Hayashi K, Suyama K, Nagata I. “Brush Sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. Am J Neuroradiol. 2011;32(9):1697–702.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Han X, Ouyang L, Zhang C, Ma H, Qin J. Relationship between deep medullary veins in susceptibility-weighted imaging and ipsilateral cerebrovascular reactivity of middle cerebral artery in patients with ischemic stroke. Exp Ther Med. 2016;11(6):2217–20.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Terasawa Y, Yamamoto N, Morigaki R, Fujita K, Izumi Y, Satomi J, et al. Brush sign on 3-T T2*-weighted MRI as a potential predictor of hemorrhagic transformation after tissue plasminogen activator therapy. Stroke. 2014;45(1):274–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Morita N, Harada M, Uno M, Matsubara S, Matsuda T, Nagahiro S, et al. Ischemic findings of T2*-weighted 3-tesla MRI in acute stroke patients. Cerebrovasc Dis. 2008;26(4):367–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Parthasarathy R, Kate M, Rempel JL, Liebeskind DS, Jeerakathil T, Butcher KS, et al. Prognostic evaluation based on cortical vein score difference in stroke. Stroke. 2013;44(10):2748–54.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Parthasarathy R, Sohn SI, Jeerakathil T, Kate MP, Mishra SM, Nambiar VK, et al. A combined arterial and venous grading scale to predict outcome in anterior circulation ischemic stroke. J Neuroimaging. 2015;25(6):969–77.PubMedCrossRefGoogle Scholar
  84. 84.
    Sharma VK, Yeo LL, Teoh HL, Shen L, Chan BP, Seet RC, et al. Internal cerebral vein asymmetry on follow-up brain computed tomography after intravenous thrombolysis in acute anterior circulation ischemic stroke is associated with poor outcome. J Stroke Cerebrovasc Dis. 2014;23(1):e39–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Bhaskar S, Bivard A, Stanwell P, Attia JR, Parsons M, Nilsson M, et al. Association of cortical vein filling with clot location and clinical outcomes in acute ischaemic stroke patients. Sci Rep. 2016;6:38525.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bhaskar S, Bivard A, Parsons M, Nilsson M, Attia JR, Stanwell P, et al. Delay of late-venous phase cortical vein filling in acute ischemic stroke patients: associations with collateral status. J Cereb Blood Flow Metab. 2017;37:671.PubMedCrossRefGoogle Scholar
  87. 87.
    Bousser MG. [Cerebral venous thrombosis. Report of 76 cases]. J Mal Vasc. 1991;16(3):249–54; discussion 54–5.Google Scholar
  88. 88.
    Bravo M, Ferrer S. [Deep venous cerebral thrombosis. Report of one case]. Rev Med Chil. 1998;126(10):1234–7.Google Scholar
  89. 89.
    Soga Y, Oka K, Sato M, Kabata T, Kawasaki T, Kawano H, et al. Cavernous sinus thrombophlebitis caused by sphenoid sinusitis—report of autopsy case. Clin Neuropathol. 2001;20(3):101–5.PubMedGoogle Scholar
  90. 90.
    Elkeslassy A, Weill A, Miaux Y, Savin D, Duverneuil NM, Chiras J. Dilatation of deep medullary veins in cortical venous occlusion due to focal tuberculous leptomeningitis. Neuroradiology. 1997;39(10):705–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Doepp F, Valdueza JM, Schreiber SJ. Serial ultrasound assessment of the basal vein of rosenthal in HSV encephalitis. Ultrasound Med Biol. 2006;32(4):473–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Xiaocheng Zhang
    • 1
  • Min Lou
    • 1
  1. 1.Department of NeurologyThe Second Affiliated Hospital of School of Medicine, Zhejiang UniversityHangzhouChina

Personalised recommendations