Animal Models of Venous Stroke

  • Qin Hu
  • Anatol Manaenko
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Cerebral venous thrombosis (CVT) involves thrombosis of the veins and sinuses of the brain, most commonly the superior sagittal sinus. Although incidence of CVT is relatively low (it accounts for only 0.5% of all strokes), CVT is a significant cause of stroke in young patients. CVT can produce partial venous occlusion obstructing venous drainage, increasing venous pressure and consequently leading to edema and hemorrhage. Despite intensive research the pathophysiological progress of CVT is poorly understood and further investigation, for all development of new reliable animal models able to evaluate the efficacy and safety of therapeutic approaches, are urgently needed. The ideal model should comprise simultaneously inducted cortical venous thrombosis, infarct and hemorrhage with consecutive relevant neurological deficits mimicking the pathophysiologic changings induced CVT in humans and allowing testing of therapeutic strategies. In contrast to arterial stroke, currently there are only a few animal models of CVT. The existing models employ either an injection of thrombogenic substances or a ligation of the sinus or cortical veins. In this chapter we will address the evolution of animal models of CVT and discuss their limitations.


Cerebral veins Animal models 


  1. 1.
    Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol. 2007;6:162–70.CrossRefGoogle Scholar
  2. 2.
    Nagai M, Terao S, Yilmaz G, Yilmaz CE, Esmon CT, Watanabe E, Granger DN. Roles of inflammation and the activated protein C pathway in the brain edema associated with cerebral venous sinus thrombosis. Stroke. 2010;41:147–52.CrossRefGoogle Scholar
  3. 3.
    Nagai M, Yilmaz CE, Kirchhofer D, Esmon CT, Mackman N, Granger DN. Role of coagulation factors in cerebral venous sinus and cerebral microvascular thrombosis. Neurosurgery. 2010;66:560–5; discussion 65–6.CrossRefGoogle Scholar
  4. 4.
    Miyamoto K, Heimann A, Kempski O. Microcirculatory alterations in a Mongolian gerbil sinus-vein thrombosis model. J Clin Neurosci. 2001;8(Suppl 1):97–105.CrossRefGoogle Scholar
  5. 5.
    Ungersbock K, Heimann A, Kempski O. Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke. 1993;24:563–9; discussion 69–70.CrossRefGoogle Scholar
  6. 6.
    Beck DJ, Russell DS. Experiments on thrombosis of the superior longitudinal sinus. J Neurosurg. 1946;3:337–47.CrossRefGoogle Scholar
  7. 7.
    Sakaki T, Kakizaki T, Takeshima T, Miyamoto K, Tsujimoto S. Importance of prevention of intravenous thrombosis and preservation of the venous collateral flow in bridging vein injury during surgery: an experimental study. Surg Neurol. 1995;44:158–62.CrossRefGoogle Scholar
  8. 8.
    Woolf AL. Experimentally produced cerebral venous obstruction. J Pathol Bacteriol. 1954;67:1–16.CrossRefGoogle Scholar
  9. 9.
    Heinz ER, Geeter D, Gabrielsen TO. Cortical vein thrombosis in the dog with a review of aseptic intracranial venous thrombosis in man. Acta Radiol Diagn. 1972;13:105–14.CrossRefGoogle Scholar
  10. 10.
    Sarwar M, Virapongse C, Carbo P. Experimental production of superior sagittal sinus thrombosis in the dog. AJNR Am J Neuroradiol. 1985;6:19–22.PubMedGoogle Scholar
  11. 11.
    Fries G, Wallenfang T, Hennen J, Velthaus M, Heimann A, Schild H, Perneczky A, Kempski O. Occlusion of the pig superior sagittal sinus, bridging and cortical veins: multistep evolution of sinus-vein thrombosis. J Neurosurg. 1992;77:127–33.CrossRefGoogle Scholar
  12. 12.
    Owens G, Stahlman G, Capps J, Meirowsky AM. Experimental occlusion of dural sinuses. J Neurosurg. 1957;14:640–7.CrossRefGoogle Scholar
  13. 13.
    Deckert M, Frerichs K, Mehraein P, Kempski O, Baethmann A, Einhaupl K. A new experimental model of sinus vein thrombosis. In: Einhaupl K, Kempski O, Baethmann A, editors. Cerebral sinus thrombosis. New York: Plenum; 1990. p. 39–42.CrossRefGoogle Scholar
  14. 14.
    Frerichs KU, Deckert M, Kempski O, Schurer L, Einhaupl K, Baethmann A. Cerebral sinus and venous thrombosis in rats induces long-term deficits in brain function and morphology—evidence for a cytotoxic genesis. J Cereb Blood Flow Metab. 1994;14:289–300.CrossRefGoogle Scholar
  15. 15.
    Nakase H, Heimann A, Kempski O. Alterations of regional cerebral blood flow and oxygen saturation in a rat sinus-vein thrombosis model. Stroke. 1996;27:720–7; discussion 28.CrossRefGoogle Scholar
  16. 16.
    Nakase H, Takeshima T, Sakaki T, Heimann A, Kempski O. Superior sagittal sinus thrombosis: a clinical and experimental study. Skull Base Surg. 1998;8:169–74.CrossRefGoogle Scholar
  17. 17.
    Rother J, Waggie K, van Bruggen N, de Crespigny AJ, Moseley ME. Experimental cerebral venous thrombosis: evaluation using magnetic resonance imaging. J Cereb Blood Flow Metab. 1996;16:1353–61.CrossRefGoogle Scholar
  18. 18.
    Stracke CP, Spuentrup E, Katoh M, Gunther RW, Spangenberg P. New experimental model of sinus and cortical vein thrombosis in pigs for MR imaging studies. Neuroradiology. 2006;48:721–9.CrossRefGoogle Scholar
  19. 19.
    Kim DE, Schellingerhout D, Jaffer FA, Weissleder R, Tung CH. Near-infrared fluorescent imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis. J Cereb Blood Flow Metab. 2005;25:226–33.CrossRefGoogle Scholar
  20. 20.
    Nakase H, Kakizaki T, Miyamoto K, Hiramatsu K, Sakaki T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995;37:280–5; discussion 85–6.CrossRefGoogle Scholar
  21. 21.
    Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol. 2000;162:201–14.CrossRefGoogle Scholar
  22. 22.
    Schaller C, Nakase H, Kotani A, Nishioka T, Meyer B, Sakaki T. Impairment of autoregulation following cortical venous occlusion in the rat. Neurol Res. 2002;24:210–4.CrossRefGoogle Scholar
  23. 23.
    Rosenblum WI, El-Sabban F. Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents. Circ Res. 1977;40:320–8.CrossRefGoogle Scholar
  24. 24.
    Watson BD, Dietrich WD, Prado R, Ginsberg MD. Argon laser-induced arterial photothrombosis. Characterization and possible application to therapy of arteriovenous malformations. J Neurosurg. 1987;66:748–54.CrossRefGoogle Scholar
  25. 25.
    Dietrich WD, Prado R, Watson BD, Nakayama H. Middle cerebral artery thrombosis: acute blood-brain barrier consequences. J Neuropathol Exp Neurol. 1988;47:443–51.CrossRefGoogle Scholar
  26. 26.
    Kimura R, Nakase H, Tamaki R, Sakaki T. Vascular endothelial growth factor antagonist reduces brain edema formation and venous infarction. Stroke. 2005;36:1259–63.CrossRefGoogle Scholar
  27. 27.
    Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60:269–80.CrossRefGoogle Scholar
  28. 28.
    Rottger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E. A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery. 2005;57:573–80; discussion 73–80.CrossRefGoogle Scholar
  29. 29.
    Rottger C, Madlener K, Heil M, Gerriets T, Walberer M, Wessels T, Bachmann G, Kaps M, Stolz E. Is heparin treatment the optimal management for cerebral venous thrombosis? Effect of abciximab, recombinant tissue plasminogen activator, and enoxaparin in experimentally induced superior sagittal sinus thrombosis. Stroke. 2005;36:841–6.CrossRefGoogle Scholar
  30. 30.
    Stolz E, Yeniguen M, Kreisel M, Kampschulte M, Doenges S, Sedding D, Ritman EL, Gerriets T, Langheinrich AC. Angioarchitectural changes in subacute cerebral venous thrombosis. A synchrotron-based micro- and nano-CT study. NeuroImage. 2011;54:1881–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Qin Hu
    • 1
  • Anatol Manaenko
    • 2
  1. 1.Discipline of Neuroscience, Department of Anatomy, Histology and EmbryologyShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Department of NeurologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations