Role of Cerebral Venous System in Neurodegenerative Disorders

  • Yan Qu
  • Lei Zhao
  • Hao Guo
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


The role of cerebral venous system in the pathogenesis of neurodegenerative diseases remains largely unknown and underinvestigated. Recent studies have suggested that several neurodegenerative disorders, such as Parkinson’s disease, multiple sclerosis, appear to be associated with venous dysfunction. Unlike the cerebral arterial system, the spatial organization of cerebral venous system is more complicated and often asymmetric, with greater structural heterogeneity than cerebral arterial anatomy. Consequently, this system has been far less studied and understood. Currently, there is an intense debate on whether cerebral venous system dysfunction can influence neurological diseases. In this chapter, we review the role of cerebral venous system in neurodegenerative diseases and aim to give some new concepts on the pathogenesis of neurodegenerative diseases.


Neurodegenerative diseases Cerebral venous system Parkinson’s disease Multiple sclerosis 


  1. 1.
    Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;338:b158.CrossRefGoogle Scholar
  2. 2.
    Lugli M, Morelli M, Guerzoni S, Maleti O. The hypothesis of patho-physiological correlation between chronic cerebrospinal venous insufficiency and multiple sclerosis: rationale of treatment. Phlebology. 2012;27(Suppl 1):178–86.CrossRefGoogle Scholar
  3. 3.
    Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652–9.CrossRefGoogle Scholar
  4. 4.
    Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71(11):804–11.CrossRefGoogle Scholar
  5. 5.
    Bohnen NI, Albin RL. White matter lesions in Parkinson disease. Nat Rev Neurol. 2011;7(4):229–36.CrossRefGoogle Scholar
  6. 6.
    Lai AY, Dorr A, Thomason LA, Koletar MM, Sled JG, Stefanovic B, McLaurin J. Venular degeneration leads to vascular dysfunction in a transgenic model of Alzheimer’s disease. Brain. 2015;138(Pt 4):1046–58.CrossRefGoogle Scholar
  7. 7.
    Weller RO, Boche D, Nicoll JA. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 2009;118(1):87–102.CrossRefGoogle Scholar
  8. 8.
    Michaud JP, Bellavance MA, Prefontaine P, Rivest S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Rep. 2013;5(3):646–53.CrossRefGoogle Scholar
  9. 9.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.CrossRefGoogle Scholar
  10. 10.
    Ge Y, Law M, Herbert J, Grossman RI. Prominent perivenular spaces in multiple sclerosis as a sign of perivascular inflammation in primary demyelination. AJNR Am J Neuroradiol. 2005;26(9):2316–9.PubMedGoogle Scholar
  11. 11.
    Kalogeris TJ, Kevil CG, Laroux FS, Coe LL, Phifer TJ, Alexander JS. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells. Am J Phys. 1999;276(1 Pt 1):L9–L19.Google Scholar
  12. 12.
    Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones. 1997;2(2):94–103.CrossRefGoogle Scholar
  13. 13.
    Zakkar M, Luong le A, Chaudhury H, Ruud O, Punjabi PP, Anderson JR, Mullholand JW, Clements AT, Krams R, Foin N, Athanasiou T, Leen EL, Mason JC, Haskard DO, Evans PC. Dexamethasone arterializes venous endothelial cells by inducing mitogen-activated protein kinase phosphatase-1: a novel antiinflammatory treatment for vein grafts? Circulation. 2011;123(5):524–32.CrossRefGoogle Scholar
  14. 14.
    Sharp CD, Houghton J, Elrod JW, Warren A, Jackson TH 4th, Jawahar A, Nanda A, Minagar A, Alexander JS. N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidant stress. Am J Physiol Heart Circ Physiol. 2005;288(4):H1893–9.CrossRefGoogle Scholar
  15. 15.
    Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci. 1999;112(Pt 23):4347–56.PubMedGoogle Scholar
  16. 16.
    Cao L, Wang H, Wang F. Amyloid-beta-induced matrix metalloproteinase-9 secretion is associated with retinal pigment epithelial barrier disruption. Int J Mol Med. 2013;31(5):1105–12.CrossRefGoogle Scholar
  17. 17.
    Carden D, Xiao F, Moak C, Willis BH, Robinson-Jackson S, Alexander S. Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins. Am J Phys. 1998;275(2 Pt 2):H385–92.Google Scholar
  18. 18.
    Minagar A, Alexander JS, Schwendimann RN, Kelley RE, Gonzalez-Toledo E, Jimenez JJ, Mauro L, Jy W, Smith SJ. Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol. 2008;65(2):199–204.CrossRefGoogle Scholar
  19. 19.
    Alexander JS, Harris MK, Wells SR, Mills G, Chalamidas K, Ganta VC, McGee J, Jennings MH, Gonzalez-Toledo E, Minagar A. Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-beta1b. Mult Scler. 2010;16(7):801–9.CrossRefGoogle Scholar
  20. 20.
    Minagar A, Ostanin D, Long AC, Jennings M, Kelley RE, Sasaki M, Alexander JS. Serum from patients with multiple sclerosis downregulates occludin and VE-cadherin expression in cultured endothelial cells. Mult Scler. 2003;9(3):235–8.CrossRefGoogle Scholar
  21. 21.
    Kevil CG, Oshima T, Alexander JS. The role of p38 MAP kinase in hydrogen peroxide mediated endothelial solute permeability. Endothelium. 2001;8(2):107–16.CrossRefGoogle Scholar
  22. 22.
    Adams CW, Abdulla YH, Torres EM, Poston RN. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol. 1987;13(2):141–52.CrossRefGoogle Scholar
  23. 23.
    Radak D, Kolar J, Tanaskovic S, Sagic D, Antonic Z, Mitrasinovic A, Babic S, Nenezic D, Ilijevski N. Morphological and haemodynamic abnormalities in the jugular veins of patients with multiple sclerosis. Phlebology. 2012;27(4):168–72.CrossRefGoogle Scholar
  24. 24.
    Pollman MJ, Naumovski L, Gibbons GH. Vascular cell apoptosis: cell type-specific modulation by transforming growth factor-beta1 in endothelial cells versus smooth muscle cells. Circulation. 1999;99(15):2019–26.CrossRefGoogle Scholar
  25. 25.
    Jacob T, Hingorani A, Ascher E. Overexpression of transforming growth factor-beta1 correlates with increased synthesis of nitric oxide synthase in varicose veins. J Vasc Surg. 2005;41(3):523–30.CrossRefGoogle Scholar
  26. 26.
    Saito S, Trovato MJ, You R, Lal BK, Fasehun F, Padberg FT Jr, Hobson RW 2nd, Duran WN, Pappas PJ. Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J Vasc Surg. 2001;34(5):930–8.CrossRefGoogle Scholar
  27. 27.
    Liu M, Kluger MS, D’Alessio A, Garcia-Cardena G, Pober JS. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am J Pathol. 2008;172(4):1088–99.CrossRefGoogle Scholar
  28. 28.
    Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr, Balasubramanian V, Garcia-Cardena G, Jain MK. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96(5):e48–57.CrossRefGoogle Scholar
  29. 29.
    Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282(18):13769–79.CrossRefGoogle Scholar
  30. 30.
    Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation. 2005;112(5):720–6.CrossRefGoogle Scholar
  31. 31.
    Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M, Schmidt M. Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem. 2010;285(34):26199–210.CrossRefGoogle Scholar
  32. 32.
    Ali F, Hamdulay SS, Kinderlerer AR, Boyle JJ, Lidington EA, Yamaguchi T, Soares MP, Haskard DO, Randi AM, Mason JC. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J Thromb Haemost. 2007;5(12):2537–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yan Qu
    • 1
  • Lei Zhao
    • 1
  • Hao Guo
    • 1
  1. 1.Department of NeurosurgeryTangdu Hospital, PLA Air Force Medical UniversityXianChina

Personalised recommendations