Role of Cerebral Venous System in Hemorrhagic Stroke

  • Yan Qu
  • Lei Zhao
  • Hao Guo
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Currently, neuroprotective strategies mainly aim to decrease bleeding from cerebral arteries and protect the insulted neurons in the hemorrhagic stroke. However, the role of cerebral venous system in the pathophysiology of hemorrhagic stroke remains unclear. In this chapter, we summarize the relationship between cerebral venous system and hemorrhagic stroke, and aim to improve the diagnosis and management of hemorrhagic stroke by using multidisciplinary treatment approach. With several cases, including venous cavernoma, developmental venous anomalies, etc., presented in this chapter, the management of hemorrhagic stroke should be expanded from the cerebral arterial system to the balance between the cerebral arterial system and the cerebral venous system. Our aim is to establish an integrative concept in the clinical management of hemorrhagic stroke.


Cerebral venous system Hemorrhagic stroke Intracerebral hemorrhage Venous cavernoma Developmental venous anomalies 


  1. 1.
    Godoy DA, Pinero G, Di Napoli M. Predicting mortality in spontaneous intracerebral hemorrhage: can modification to original score improve the prediction? Stroke. 2006;37(4):1038–44.CrossRefGoogle Scholar
  2. 2.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.CrossRefGoogle Scholar
  3. 3.
    Andres RH, Guzman R, Ducray AD, Mordasini P, Gera A, Barth A, Widmer HR, Steinberg GK. Cell replacement therapy for intracerebral hemorrhage. Neurosurg Focus. 2008;24(3-4):E16.CrossRefGoogle Scholar
  4. 4.
    Washington CW, Zipfel GJ, Participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage. Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care. 2011;15(2):312–7.CrossRefGoogle Scholar
  5. 5.
    Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58.CrossRefGoogle Scholar
  6. 6.
    Ostergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, Iversen NK, Secher N, Engedal TS, Anzabi M, Jimenez EG, Cai C, Koch KU, Naess-Schmidt ET, Obel A, Juul N, Rasmussen M, Sorensen JC. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33(12):1825–37.CrossRefGoogle Scholar
  7. 7.
    Si Z, Luan L, Kong D, Zhao G, Wang H, Zhang K, Yu T, Pang Q. MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res. 2008;13(3):121–6.PubMedGoogle Scholar
  8. 8.
    Li Q, Khatibi N, Zhang JH. Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res. 2014;5(2):163–6.CrossRefGoogle Scholar
  9. 9.
    Liu S, Connor J, Peterson S, Shuttleworth CW, Liu KJ. Direct visualization of trapped erythrocytes in rat brain after focal ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22(10):1222–30.CrossRefGoogle Scholar
  10. 10.
    Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64(3):546–53; discussion 553-4.CrossRefGoogle Scholar
  11. 11.
    Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986;59(2):216–20.CrossRefGoogle Scholar
  12. 12.
    Usman U, Wasay M. Mechanism of neuronal injury in cerebral venous thrombosis. J Pak Med Assoc. 2006;56(11):509–12.PubMedGoogle Scholar
  13. 13.
    Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci. 1999;112(Pt 23):4347–56.PubMedGoogle Scholar
  14. 14.
    de Bruijn SF, Stam J, Kappelle LJ. Thunderclap headache as first symptom of cerebral venous sinus thrombosis. CVST Study Group. Lancet. 1996;348(9042):1623–5.CrossRefGoogle Scholar
  15. 15.
    Pradhan S, Yadav R, Diwakar H, Phadke RV. Subarachnoid hemorrhage following chronic dural venous sinus thrombosis. Angiology. 2007;58(4):498–501.CrossRefGoogle Scholar
  16. 16.
    Ulrich ND, Lapeyre ER, Moore RC. Hemorrhagic stroke resulting from venous malformation at 20 weeks of pregnancy. Ochsner J. 2016;16(4):542–4.PubMedPubMedCentralGoogle Scholar
  17. 17.
    James AH, Bushnell CD, Jamison MG, Myers ER. Incidence and risk factors for stroke in pregnancy and the puerperium. Obstet Gynecol. 2005;106(3):509–16.CrossRefGoogle Scholar
  18. 18.
    Kittner SJ, Stern BJ, Feeser BR, Hebel R, Nagey DA, Buchholz DW, Earley CJ, Johnson CJ, Macko RF, Sloan MA, Wityk RJ, Wozniak MA. Pregnancy and the risk of stroke. N Engl J Med. 1996;335(11):768–74.CrossRefGoogle Scholar
  19. 19.
    Leblanc GG, Golanov E, Awad IA, Young WL, Biology of Vascular Malformations of the Brain NINDS Workshop Collaborators. Biology of vascular malformations of the brain. Stroke. 2009;40(12):e694–702.CrossRefGoogle Scholar
  20. 20.
    Kalani MY, Zabramski JM. Risk for symptomatic hemorrhage of cerebral cavernous malformations during pregnancy. J Neurosurg. 2013;118(1):50–5.CrossRefGoogle Scholar
  21. 21.
    Li X, Wang Y, Chen W, Wang W, Chen K, Liao H, Lu J, Li Z. Intracerebral hemorrhage due to developmental venous anomalies. J Clin Neurosci. 2016;26:95–100.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yan Qu
    • 1
  • Lei Zhao
    • 1
  • Hao Guo
    • 1
  1. 1.Department of NeurosurgeryTangdu Hospital, PLA Air Force Medical UniversityXianChina

Personalised recommendations