Advertisement

Object Localisation with a Highly Compliant Tactile Sensory Probe via Distributed Strain Sensors

  • Marco Schultz
  • Volker DürrEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)

Abstract

Insect antennae have been repeatedly proposed as paragons of active tactile sensors for biomimetic robots. A challenging aspect of using insect-like feelers for tactile localisation concerns the compliance of the long and slender structure of insect antennae. Other than in a rigid sensory probe, where the contact location in space may be estimated from the pointing direction and contact distance along the probe (polar coordinates), the strong compliance of insect antennae during contact events raises the question how insects can localise contact positions in space. Here we study the stick insect antenna to address this question. Our main objective was to test whether and how the bending properties of the insect antenna may allow reliable estimation of spatial contact locations through an array of bending sensors. During walking and climbing, the stick insect Carausius morosus executes cyclic antennal movements to explore the ambient space ahead. When the antenna touches an obstacle, it often bends strongly. Nevertheless, the insect can reliably reach for the contacted obstacle. Here, we systematically deflected insect antennae with an industrial robot to mimic an array of static contact locations. Then, we measured the resulting curvature of the flagellum, assuming that campanifom sensilla distributed along the flagellum could encode the corresponding bending profile. We found that we could train an artificial neural network to estimate the contact positions in 3D space with an accuracy of 0.5 mm or less from a given set of curvature data. This suggests that the bending characteristics of a tactile sensory probe could be tuned to aid spatial localisation by contact-site-dependent, compliant deformation.

Keywords

Insect antenna Tactile localisation Flagellum Passive bending Curvature Artificial neural network 

References

  1. 1.
    Prescott, T.J., Diamond, M.E., Wing, A.M.: Active touch sensing. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366, 2989–2995 (2011)CrossRefGoogle Scholar
  2. 2.
    Dürr, V., Theunissen, L.M., Dallmann, C.J., Hoinville, T., Schmitz, J.: Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72, 379 (2018)CrossRefGoogle Scholar
  3. 3.
    Kaneko, M., Kanayama, N., Tsuji, T.: Active antenna for contact sensing. IEEE Trans. Robot. Autom. 14, 278–291 (1998)CrossRefGoogle Scholar
  4. 4.
    Ueno, N., Svinin, M.M., Kaneko, M.: Dynamic contact sensing by flexible beam. IEEE/ASME Trans. Mechatron. 3, 254–264 (1998)CrossRefGoogle Scholar
  5. 5.
    Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Dürr, V.: An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Front. Neurorobotics 6, 1–18 (2012)CrossRefGoogle Scholar
  6. 6.
    Hoinville, T., Harischandra, N., Krause, A.F., Dürr, V.: Insect-inspired tactile contour sampling using vibration-based robotic antennae. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 118–129. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09435-9_11CrossRefGoogle Scholar
  7. 7.
    Sandeman, D.C.: Physical properties, sensory receptors and tactile reflexes of the antenna of the australian freshwater crayfish Cherax destructor. J. Exp. Biol. 141, 197–217 (1989)Google Scholar
  8. 8.
    Dirks, J.-H., Dürr, V.: Biomechanics of the stick insect antenna. Damping properties and structural correlates of the cuticle. J. Mech. Behav. Biomed. Mater. 4, 2031–2042 (2011)CrossRefGoogle Scholar
  9. 9.
    Mongeau, J.-M., Demir, A., Dallmann, C.J., Jayaram, K., Cowan, N.J., Full, R.J.: Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running. J. Exp. Biol. 217, 3333–3345 (2014)CrossRefGoogle Scholar
  10. 10.
    Demir, A., Samson, E.W., Cowan, N.J.: A tunable physical model of arthropod antennae. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3793–3798. IEEE (2010)Google Scholar
  11. 11.
    Staudacher, E.M., Gebhardt, M., Dürr, V.: Antennal movements and mechanoreception. Neurobiology of active tactile sensors. In: Advances in Insect Physiology, vol. 32, pp. 49–205. Elsevier (2005)Google Scholar
  12. 12.
    Schütz, C., Dürr, V.: Active tactile exploration for adaptive locomotion in the stick insect. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2996–3005 (2011)CrossRefGoogle Scholar
  13. 13.
    Heinzel, H.-G., Gewecke, M.: Directional sensitivity of the antennal campaniform sensilla in locusts. Naturwissenschaften 66, 212–213 (1979)CrossRefGoogle Scholar
  14. 14.
    Bässler, U.: Neural Basis Of Elementary Behavior in Stick Insects. Springer, Berlin (1983)CrossRefGoogle Scholar
  15. 15.
    Chapman, K.M., Duckrow, R.B., Moran, D.T.: Form and role of deformation in excitation of an insect mechanoreceptor. Nature 244, 453–454 (1973)CrossRefGoogle Scholar
  16. 16.
    Gollin, A., Dürr, V.: Estimating body pitch from distributed proprioception in a hexapod. In: Vasiliki, V., et al. (eds.) Living Machines 2018. LNAI, vol. 10928, pp. 187–199. Springer, AG (2018).Google Scholar
  17. 17.
    Lee, J., Sponberg, S.N., Loh, O.Y., Lamperski, A.G., Full, R.J., Cowan, N.J.: Templates and anchors for antenna-based wall following in cockroaches and robots. IEEE Trans. Robot. 24, 130–143 (2008)CrossRefGoogle Scholar
  18. 18.
    Slifer, E.H.: Sense organs on the antennal flagellum of a walkingstick Carausius morosus Brünner (Phasmida). J. Morphol. 120, 189–201 (1966)CrossRefGoogle Scholar
  19. 19.
    Monteforti, G., Angeli, S., Petacchi, R., Minnocci, A.: Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida. Phasmatidae). Arthropod Struct. Dev. 30, 195–205 (2002)CrossRefGoogle Scholar
  20. 20.
    Comer, C., Baba, Y.: Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366, 3006–3015 (2011)CrossRefGoogle Scholar
  21. 21.
    Okada, J., Akamine, S.: Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 557–565 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological CyberneticsBielefeld UniversityBielefeldGermany
  2. 2.Cognitive Interaction Technology – Center of ExcellenceBielefeld UniversityBielefeldGermany

Personalised recommendations