Advertisement

Investigation of Tip Extrusion as an Additive Manufacturing Strategy for Growing Robots

  • Dario LunniEmail author
  • Emanuela Del Dottore
  • Ali Sadeghi
  • Matteo Cianchetti
  • Edoardo Sinibaldi
  • Barbara MazzolaiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)

Abstract

This paper presents a new design for material extrusion as embeddable additive manufacturing technology for growing robots inspired by plant roots. The conceptual design is proposed and based on the deposition of thermoplastic material a complete layer at a time. To guide the design of the system, we first studied the thermal properties through approximated models considering PLA (poly-lactic acid) as feeding material. The final shape and constituent materials are then accordingly selected. We obtained a simple design that allows miniaturization and a fast assembly of the system, and we demonstrate the feasibility of the design by testing the assembled system. We also show the accuracy of our thermal prediction by comparing the thermal distribution obtained from FEM simulations with experimental data, obtaining a maximal error of ~8 °C. Preliminary experimental growth results are encouraging regarding the potentialities of this approach that can potentially achieve 0.15 \( \div \) 0.30 mm/s of growth speed. Our results suggest that this strategy can be explored and exploited for enabling the growth from the tip of artificial systems enouncing robots’ plasticity.

Keywords

Additive manufacturing Growing robot Bioinspiration 

References

  1. 1.
    Ballard, L.A., Sabanovic, S., Kaur, J., Milojevic, S.: George Charles Devol, Jr. [history]. IEEE Robot. Autom. Mag. 19(3), 114–119 (2012)CrossRefGoogle Scholar
  2. 2.
    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)CrossRefGoogle Scholar
  3. 3.
    Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)CrossRefGoogle Scholar
  4. 4.
    Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 1581–1586. IEEE (1988)Google Scholar
  5. 5.
    Fukuda, T., Ueyama, T.: Cellular Robotics and Micro Robotic Systems, vol. 10. World Scientific, Singapore (1994)Google Scholar
  6. 6.
    Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics?. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 102, pp. 703–712. Springer, Heidelberg (1993).  https://doi.org/10.1007/978-3-642-58069-7_38CrossRefGoogle Scholar
  7. 7.
    Gilpin, K., Rus, D.: Modular robot systems. IEEE Robot. Autom. Mag. 17(3), 38–55 (2010)CrossRefGoogle Scholar
  8. 8.
    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)CrossRefGoogle Scholar
  9. 9.
    Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-30440-3CrossRefGoogle Scholar
  10. 10.
    Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16(4), 745–757 (2011)CrossRefGoogle Scholar
  11. 11.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  12. 12.
    Wang, T., Li, H., Meng, C.: Collective grasping for non-cooperative objects using modular self-reconfigurable robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, pp. 3296–3301. IEEE (2015)Google Scholar
  13. 13.
    Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.J.: Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robot. Auton. Syst. 62(7), 1016–1033 (2014)CrossRefGoogle Scholar
  14. 14.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974 (2000)CrossRefGoogle Scholar
  15. 15.
    Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015)CrossRefGoogle Scholar
  16. 16.
    Kim, J., Alspach, A., Yamane, K.: 3D printed soft skin for safe human-robot interaction. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 2419–2425. IEEE (2015)Google Scholar
  17. 17.
    Brodbeck, L., Wang, L., Iida, F.: Robotic body extension based on hot melt adhesives. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, pp. 4322–4327. IEEE (2012)Google Scholar
  18. 18.
    Wang, L., Brodbeck, L., Iida, F.: Mechanics and energetics in tool manufacture and use: a synthetic approach. J. R. Soc. Interface 11(100), 20140827 (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Culha, U., Iida, F.: A dragline-forming mobile robot inspired by spiders. Bioinspir. Biomim. 9(1), 016006 (2014)CrossRefGoogle Scholar
  20. 20.
    Sadeghi, A., Mondini, A., Mazzolai, B.: Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4(3), 211–223 (2017)Google Scholar
  21. 21.
    Baluška, F., Mancuso, S., Volkmann, D., Barlow, P.W.: Root apex transition zone: a signalling–response nexus in the root. Trends Plant Sci. 15(7), 402–408 (2010)CrossRefGoogle Scholar
  22. 22.
    Sadeghi, A., Tonazzini, A., Popova, L., Mazzolai, B.: A novel growing device inspired by plant root soil penetration behaviors. PloS ONE 9(2), e90139 (2014)CrossRefGoogle Scholar
  23. 23.
    Hart, J.W.: Plant Tropisms: and Other Growth Movements. Springer Science & Business Media, Amsterdam (1990)Google Scholar
  24. 24.
    Hodge, A.: The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162(1), 9–24 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Lunni
    • 1
    • 2
    Email author
  • Emanuela Del Dottore
    • 1
  • Ali Sadeghi
    • 1
  • Matteo Cianchetti
    • 2
  • Edoardo Sinibaldi
    • 1
  • Barbara Mazzolai
    • 1
    Email author
  1. 1.Center for Micro-BioRoboticsIstituto Italiano di Tecnologia, Polo SantAnna ValderaPontedera, PisaItaly
  2. 2.The BioRobotics Institute, Scuola Superiore Sant Anna, Polo SantAnna ValderaPontedera, PisaItaly

Personalised recommendations