Active Touch with a Biomimetic 3D-Printed Whiskered Robot

  • Nathan F. Lepora
  • Niels Burnus
  • Yilin Tao
  • Luke Cramphorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)


We propose a new design of active tactile whiskered robot: the actuated TacWhisker array, analogous to motile tactile vibrissae such as the rodent macrovibrissae. The design is particularly simple, being completely 3D-printed, only having one motor to actuate all 10 whiskers, and utilizing optical tactile sensing to transduce whisker deflections into bending moments. This robot is used to investigate active touch on a simple localization task where the robot seeks to move the whisker array to centre on a stimulus while perceiving its location. Active localization with a threshold-crossing decision rule was found to rapidly improve the perceptual errors with successive whisks. Curiously, although the sensing is dominated by the whisker motion, this does not appreciably affect performance on this simple task. Overall, the robot promises to give a simple embodiment of whisker-based active touch to give insight into the mechanisms underlying perception in the mammalian brain.


Tactile sensing Active touch Biomimetics Whiskers 



I thank members of the Tactile Robotics group, including Benjamin Ward-Cherrier, Nicholas Pestell, Kirsty Aquilina, Jasper James and John Lloyd, and also BRL colleagues Martin Pearson and Ben Mitchinson.


  1. 1.
    Ahl, A.S.: The role of vibrissae in behavior: a status review. Vet. Res. Commun. 10(1), 245–268 (1986)CrossRefGoogle Scholar
  2. 2.
    Mitchinson, B., Prescott, T.J.: Whisker movements reveal spatial attention: a unified computational model of active sensing control in the rat. PLoS Comput. Biol. 9(9), e1003236 (2013)CrossRefGoogle Scholar
  3. 3.
    Sofroniew, N., Svoboda, K.: Whisking. Curr. Biol. 25(4), R137–R140 (2015)CrossRefGoogle Scholar
  4. 4.
    Prescott, T.J., Pearson, M.J., Mitchinson, B., Sullivan, J.C.W., Pipe, A.G.: Whisking with robots. IEEE Robot. Autom. Mag. 16, 42–50 (2009)CrossRefGoogle Scholar
  5. 5.
    Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Philos. Trans. R. Soc. B Biol. Sci. 366(1581), 3085–3096 (2011)CrossRefGoogle Scholar
  6. 6.
    Lepora, N.F.: Biomimetic active touch with fingertips and whiskers. IEEE Trans. Haptics 9(2), 170–183 (2016)CrossRefGoogle Scholar
  7. 7.
    Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system. Adapt. Behav. 15(3), 223–240 (2007)CrossRefGoogle Scholar
  8. 8.
    Pearson, M.J., Mitchinson, B., Welsby, J., Pipe, T., Prescott, T.J.: SCRATCHbot: active tactile sensing in a whiskered mobile robot. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226, pp. 93–103. Springer, Heidelberg (2010). Scholar
  9. 9.
    Sullivan, J.C., Mitchinson, B., Pearson, M.J., Evans, M., Lepora, N.F., Fox, C.W., Melhuish, C., Prescott, T.J.: Tactile discrimination using active whisker sensors. IEEE Sens. J. 12(2), 350–362 (2012)CrossRefGoogle Scholar
  10. 10.
    Ward-Cherrier, B., Pestell, N., Cramphorn, L., Winstone, B., Giannaccini, M.E., Rossiter, J., Lepora, N.F.: The tactip family: soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft Robot. 5(2), 216–227 (2018)CrossRefGoogle Scholar
  11. 11.
    Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: International Conference on Advanced Robotics (ICAR), pp. 1–6 (2009)Google Scholar
  12. 12.
    Lepora, N.F., Ward-Cherrier, B.: Superresolution with an optical tactile sensor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2686–2691 (2015)Google Scholar
  13. 13.
    Lepora, N.F., Sullivan, J.C., Mitchinson, B., Pearson, M., Gurney, K., Prescott, T.J.: Brain-inspired Bayesian perception for biomimetic robot touch. In: IEEE International Conference on Robotics and Automation, pp. 5111–5116 (2012)Google Scholar
  14. 14.
    Diamond, M.E., Von Heimendahl, M., Knutsen, P.M., Kleinfeld, D., Ahissar, E.: ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 9(8), 601–612 (2008)CrossRefGoogle Scholar
  15. 15.
    Anderson, S.R., Pearson, M.J., Pipe, A., Prescott, T., Dean, P., Porrill, J.: Adaptive cancelation of self-generated sensory signals in a whisking robot. IEEE Trans. Robot. 26(6), 1065–1076 (2010)CrossRefGoogle Scholar
  16. 16.
    Salman, M., Pearson, M.J.: Advancing whisker based navigation through the implementation of Bio-Inspired whisking strategies. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 767–773 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nathan F. Lepora
    • 1
    • 2
  • Niels Burnus
    • 1
    • 2
  • Yilin Tao
    • 1
    • 2
  • Luke Cramphorn
    • 1
    • 2
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK
  2. 2.Bristol Robotics LaboratoryBristolUK

Personalised recommendations