Advertisement

Artificial System Inspired by Climbing Mechanism of Galium Aparine Fabricated via 3D Laser Lithography

  • Isabella Fiorello
  • Omar Tricinci
  • Anand Kumar Mishra
  • Francesca Tramacere
  • Carlo Filippeschi
  • Barbara Mazzolai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)

Abstract

In this work, we present an artificial dry adhesive system inspired by the leaf-climbing mechanisms in Galium aparine. Among the different species of climbing plants, G. aparine shows a unique capability of adhesion to a wide range of roughness and stiffness objects, mainly via its leaves, using microscopic hooks for the physical interlocking. The adaxial (upper) and abaxial (lower) leaf surfaces differ significantly in attachment properties, which depend on the direction of the applied force (ratchet-like mechanism). In order to mimic this adhesive behavior, we designed artificial abaxial and adaxial leaf hooks by extracting the morphological parameters from the natural structures. We fabricated artificial hooks at different scales (1:1, 1:2, 1:4) using Direct Laser Lithography (DLL), a technique that allows a rapid prototyping of 3D microstructures. The adhesion of the artificial systems was tested on a polyester tissue substrate, obtaining adhesive forces comparable or higher than the natural counterpart. This biomimetic approach can open new opportunities to understand nature through artificial investigations and lead to several applications in the fields of robotics and space technology.

Keywords

Biomimetics Dry adhesion Climbing plants Leaf hooks Direct laser lithography 

Notes

Acknowledgments

This work is supported by the European Commission under the FLAG-ERA JointTransnational Call (JTC) 2016, RoboCom++.

References

  1. 1.
    Isnard, S., Silk, W.K.: Moving with climbing plants from Charles Darwin’s time into the 21st century. Am. J. Bot. 96(7), 1205–1221 (2009)CrossRefGoogle Scholar
  2. 2.
    Darwin, C.: On the movements and habits of climbing plants. Bot. J. Linn. Soc. 9(33–34), 1–118 (1865)CrossRefGoogle Scholar
  3. 3.
    Gallenmüller, F., Feus, A., Fiedler, K., Speck, T.: Rose prickles and asparagus spines-different hook structures as attachment devices in climbing plants. PLoS ONE 10(12), e0143850 (2015)CrossRefGoogle Scholar
  4. 4.
    Melzer, B., Seidel, R., Steinbrecher, T., Speck, T.: Structure, attachment properties, and ecological importance of the attachment system of English ivy (Hedera helix). J. Exp. Bot. 63(1), 191–201 (2011)CrossRefGoogle Scholar
  5. 5.
    Seidelmann, K., Melzer, B., Speck, T.: The complex leaves of the monkey’s comb (Amphilophium crucigerum, Bignoniaceae): a climbing strategy without glue. Am. J. Bot. 99(11), 1737–1744 (2012)CrossRefGoogle Scholar
  6. 6.
    Bauer, G., Klein, M.C., Gorb, S.N., Speck, T., Voigt, D., Gallenmuller, F.: Always on the bright side: the climbing mechanism of Galium aparine. Proc. Biol. Sci. 278(1715), 2233–2239 (2011)CrossRefGoogle Scholar
  7. 7.
    Burris, J.N., Lenaghan, S.C., Stewart, C.N.: Climbing plants: attachment adaptations and bioinspired innovations. Plant Cell Rep. 37(1–10), 565–574 (2017)Google Scholar
  8. 8.
    Andrews, H.G.: Badyal, J.P.S.: Bioinspired hook surfaces based upon a ubiquitous weed (Galium aparine) for dry adhesion. J. Adhes. Sci. Technol. 28(13), 1243–1255 (2014)CrossRefGoogle Scholar
  9. 9.
    Niklas, J.K.: Climbing plants: attachment and the ascent for light. Curr. Biol. 21(5), 199–201 (2011)CrossRefGoogle Scholar
  10. 10.
    Tricinci, O., Terencio, T., Mazzolai, B., Pugno, N.M., Greco, F., Mattoli, V.: 3D micropatterned surface inspired by salvinia molesta via direct laser lithography. ACS Appl. Mater. Interfaces. 7, 25560–25567 (2015)CrossRefGoogle Scholar
  11. 11.
    Brodoceanu, D., Bauer, C.T., Kroner, E., Arzt, E., Kraus, T.: Hierarchical bioinspired adhesive surfaces—a review. Bioinspiration & Biomim. 11, 051001 (2016)CrossRefGoogle Scholar
  12. 12.
    Marino, A., Filippeschi, C., Mattoli, V., Mazzolai, B., Ciofani, G.: Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale 7(46), 2841–2850 (2015)CrossRefGoogle Scholar
  13. 13.
    Chen, Q., Gorb, S.N., Gorb, E., Pugno, N.: Mechanics of plant fruit hooks. J. R. Soc. Interface 10(81) (2013).  https://doi.org/10.1098/rsif.2012.0913CrossRefGoogle Scholar
  14. 14.
    Wang, S., Jiang, H., Cutkosky, M.R.: A palm for rock climbing based on dense arrays of micro-spines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, pp. 52–59. IEEE (2016)Google Scholar
  15. 15.
    Asbeck, A.T., Kim, S., McClung, A., Parness, A., Cutkosky, M.R.: Climbing walls with microspines. In: IEEE/ICRA International Conference on Robotics and Automation, Orlando, Florida (2006)Google Scholar
  16. 16.
    Parness, A., Frost, M., Thatte, N., King, J.P., Witkoe, K., Nevarez, M., Garrett, M., Aghazarian, H., Kennedy, B.: Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. J. Field Robot. 30(6), 897–915 (2013)CrossRefGoogle Scholar
  17. 17.
    Mishra, A.K., Del Dottore, E., Sadeghi, A., Mondini, A., Mazzolai, B.: SIMBA: tendon driven modular continuum arm with soft reconfigurable gripper. Front. Robot. AI 4, 4 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Isabella Fiorello
    • 1
    • 2
  • Omar Tricinci
    • 1
  • Anand Kumar Mishra
    • 1
    • 2
  • Francesca Tramacere
    • 1
  • Carlo Filippeschi
    • 1
  • Barbara Mazzolai
    • 1
  1. 1.Center for Micro-BioRobotics@SSSA, Istituto Italiano di TecnologiaPontederaItaly
  2. 2.The BioRobotics Institute, Scuola Superiore Sant’AnnaPontederaItaly

Personalised recommendations