Advertisement

A Novel Multi-population Particle Swarm Optimization with Learning Patterns Evolved by Genetic Algorithm

  • Chunxiuzi Liu
  • Fengyang Sun
  • Qingbei Guo
  • Lin Wang
  • Bo Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)

Abstract

In recent years, particle swarm optimization (PSO) and genetic algorithm (GA) have been applied to solve various real-world problems. However, the original PSO is based on single population whose learning patterns (inertia weights, learning factors) has no potentials in evolution. All particles in the population interact and search according to a fixed pattern, which leads to the reduction of population diversity in the later iterations and premature convergence on complex and multi-modal problems. Therefore, a novel multi-population PSO with learning patterns evolved by GA is proposed to improve diversity and exploration capabilities of populations. Meanwhile, the local search of PSO particles which start in the same position also evolved by GA independently maintains exploitation ability inside each sub population. Experimental results show that the accuracy is comparable and our method improves the convergence speed.

Keywords

Co-evolutionary computation Genetic algorithm Particle swarm optimization 

Notes

Acknowledgment

This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 81671785, No. 61472164, No. 61472163, No. 61672262. Science and technology project of Shandong Province under Grant No. 2015GGX101025. Project of Shandong Province Higher Educational Science and Technology Program under Grant no. J16LN07. Shandong Provincial Key R&D Program under Grant No. 2016ZDJS01A12, No. 2016GGX101001.

References

  1. 1.
    Rosen, C., et al.: New methods for competitive coevolution. Evol. Comput. 5, 1–29 (1997)CrossRefGoogle Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proceedings the Sixth International Symposium on Micromachine and Human Science, pp. 39–43 (1995)Google Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Austria, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12, 171–195 (2008)CrossRefGoogle Scholar
  5. 5.
    Ciurana, J., Arias, G., Ozel, T.: Neural network modeling and particle swarm optimization of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater. Manuf. Process. 24, 358–368 (2009)CrossRefGoogle Scholar
  6. 6.
    Bohner, M., Hassan, T.S., Li, T.: Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29(2), 548–560 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zainud-Deen, S.H., Hassen, W.M., Ali, E.M.: Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques. Prog. Electromagnet. Res. 3, 35–46 (2008)CrossRefGoogle Scholar
  8. 8.
    Eslami, M., Shareef, H., Mohamed, A.: Power system stabilizer design using hybrid multi–objective particle swarm optimization with chaos. J. Cent. South Univ. Technol. 18, 1579–1588 (2011)CrossRefGoogle Scholar
  9. 9.
    Lim, K.S., Koo, V.C., Ewe, H.T.: Multi-angular scatterometer measurements for various stages of rice growth. Electromagnet. Res. 1, 159–176 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)CrossRefGoogle Scholar
  11. 11.
    Eslami, M., Shareef, H., Mohamed, A.: Power system stabilizer design using hybrid multi–objective particle swarm optimization with chaos. J. Cent. South Univ. Technol. 18, 1579–1588 (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Yang, B., Chen, Y.H.: Improving particle swarm optimization using multi-layer searching strategy. Inf. Sci. 274, 70–94 (2014)CrossRefGoogle Scholar
  13. 13.
    Alexandre, H.F.D., Vasconcelos, J.A.: Multi-objective genetic algorithms applied to solve optimization problems. IEEE Trans. Magn. 38, 1133–1136 (2002)CrossRefGoogle Scholar
  14. 14.
    Cmara, M., Ortega, J., Toro, F.D.: A single front genetic algorithm for parallel multi–objective optimization in dynamic environments. Neurocomputing 72, 3570–3579 (2009)CrossRefGoogle Scholar
  15. 15.
    Arabas, J., Michalewicz, Z., Mulawka, J.: Genetic algorithms with varying population size. In: Proceedings of the 1st IEEE International Conference on Evolutionary Computation, pp. 73–78 (1994)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison–Wesley Publishing Company, Reading (1989)zbMATHGoogle Scholar
  17. 17.
    Srinvas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24, 656–666 (1994)CrossRefGoogle Scholar
  18. 18.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Yang, B., Wang, S., Liang, Z.F.: Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Trans. Evol. Comput. 19, 679–693 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhou, J., Chen, L., Chen, C.L.P., Zhang, Y., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)CrossRefGoogle Scholar
  21. 21.
    Yu, Z.Q., Liu, Y., Yu, X.H., Ken, Q.P.: Scalable distributed processing of K nearest neighbor queries over moving objects. IEEE Trans. Knowl. Data Eng. 27, 1383–1396 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, Y., et al.: Discriminative feature representation: an effective postprocessing solution to low dose CT imaging. Phys. Med. Biol. 62, 2103–2131 (2017)CrossRefGoogle Scholar
  23. 23.
    Liu, J., et al.: 3D feature constrained reconstruction for low dose CT imaging. IEEE Trans. Circuits Syst. Video Technol. (2016)Google Scholar
  24. 24.
    Liu, C.L., Liu, H.W., Yang, J.Y.: A path planning method based on adaptive genetic algorithm for mobile robot. J. Inf. Comput. Sci. 8, 808–814 (2011)Google Scholar
  25. 25.
    Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frankl. Inst. 354, 4719–4738 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Potts, J.C., Giddens, T.P., Yadav, S.B.: The development and evaluation of an improved genetic algorithms based on migration and artificial selection. IEEE Trans. Syst. Man Cybern. 24, 73–86 (1994)CrossRefGoogle Scholar
  27. 27.
    Ehrlich, P.R., Raven, P.H.: Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964)CrossRefGoogle Scholar
  28. 28.
    Rosen, C., et al.: New methods for competitive coevolution. Evol. Comput. 5, 1–29 (1997)CrossRefGoogle Scholar
  29. 29.
    Wang, L., Orchard, J.: Investigating the evolution of a neuroplasticity network for learning. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2017)Google Scholar
  30. 30.
    Potts, J.C., Giddens, T.P., Yadav, S.B.: The development and evaluation of an improved genetic algorithms based on migration and artificial selection. IEEE Trans. Syst. Man Cybern. 24, 73–86 (1994)CrossRefGoogle Scholar
  31. 31.
    Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29, 10–24 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, L., Yang, B., Chen, Y.H., Zhang, X.Q., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28, 2255–2267 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Cao, X.B., Luo, W.J., Wang, X.F.: A co–evolution pattern based on ecological population competition model. J. Softw. 12, 556–562 (2001)Google Scholar
  34. 34.
    Wang, B., Gao, Y., Xie, J.: A genetic algorithms based on global coordination and local evolution. Comput. Eng. 31, 29–31 (2005)Google Scholar
  35. 35.
    Tsai, C.C., Huang, H.C., Chan, C.K.: Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans. Ind. Electron. 58, 4813–4821 (2011)CrossRefGoogle Scholar
  36. 36.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi–swarm particle swarm optimizer with local search for large scale global optimization. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, Hong Kong, pp. 3845–3852 (2008)Google Scholar
  37. 37.
    Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the cec 2005 special session on real–parameter optimization. Technical report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina

Personalised recommendations