Advertisement

Genetic Learning Particle Swarm Optimization with Diverse Selection

  • Da Ren
  • Yi Cai
  • Han Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)

Abstract

Particle swarm optimization (PSO) is a widely used heuristic algorithm. However, canonical PSO may lead to premature convergence. To solve this problem, researchers try to hybridize PSO with genetic algorithm (GA) which facilitates global effectiveness. One of the successful algorithms is genetic learning PSO (GL-PSO). However, we find that the selection in GL-PSO reduce the diversity of particles. It may lead premature convergence in some test functions. To solve this problem, we figure out a genetic learning particle swarm optimization with diverse selection (GL-PSODS). We test our proposed algorithm in test functions of CEC2014. Our experiments show that GL-PSODS has an improvement in some test functions compared to PSO and GL-PSO.

Keywords

Particle swarm optimization Genetic algorithm GL-PSO 

Notes

Acknowledgment

This work is supported by the Fundamental Research Funds for the Central Universities, SCUT (NO. 2017ZD048,2015ZM136), Tiptop Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2015TQ01X633), Science and Technology Planning Project of Guangdong Province, China (No. 2016A030310423), Science and Technology Program of Guangzhou (International Science and Technology Cooperation Program No. 201704030076) and Science and Technology Planning Major Project of Guangdong Province (No. 2015A070711001).

References

  1. 1.
    Alrashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Press (2009)CrossRefGoogle Scholar
  2. 2.
    Arumugam, M.S., Rao, M.V.C.: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Appl. Soft Comput. 8(1), 324–336 (2008)CrossRefGoogle Scholar
  3. 3.
    Cai, Y., Chen, Z., Li, J., Li, Q., Min, H.: An adaptive particle swarm optimization algorithm for distributed search and collective cleanup in complex environment. Int. J. Distrib. Sens. Netw. 2013(4), 1–9 (2013)Google Scholar
  4. 4.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: International Symposium on MICRO Machine and Human Science, pp. 39–43 (2002)Google Scholar
  5. 5.
    Frans, V.D.B., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  6. 6.
    Gong, Y.J., Li, J.J., Zhou, Y., Li, Y., Chung, H.S., Shi, Y.H., Zhang, J.: Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277 (2016)CrossRefGoogle Scholar
  7. 7.
    Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(6), 1272–1282 (2005)CrossRefGoogle Scholar
  8. 8.
    Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (2002)Google Scholar
  10. 10.
    Kulkarni, R.V., Venayagamoorthy, G.K.: Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans. Syst. Man Cybern. Part C 41(2), 262–267 (2011)CrossRefGoogle Scholar
  11. 11.
    Lane, M.C., Xue, B., Liu, I., Zhang, M.: Particle swarm optimisation and statistical clustering for feature selection. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 214–220. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03680-9_23CrossRefGoogle Scholar
  12. 12.
    Ling, S.H., Iu, H.H., Chan, K.Y., Lam, H.K., Yeung, B.C., Leung, F.H.: Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. Syst. Man Cybern. Part B Cybern. A Publ. IEEE Syst. Man Cybern. Soc. 38(3), 743 (2008)CrossRefGoogle Scholar
  13. 13.
    Ruiz-Cruz, R., Sanchez, E.N., Ornelas-Tellez, F., Loukianov, A.G., Harley, R.G.: Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator. IEEE Trans. Cybern. 43(6), 1698–1709 (2013)CrossRefGoogle Scholar
  14. 14.
    Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, L.M.: An improved GA and a novel PSO-GA-based hybrid algorithm. Inf. Process. Lett. 93(5), 255–261 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Valdez, F., Melin, P., Mendoza, O.: A new evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms: the case of neural networks optimization, vol. 574, pp. 1536–1543 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.South China University of TechnologyGuangzhouChina

Personalised recommendations