Unambiguous Discrimination Between Mixed Quantum States Based on Programmable Quantum State Discriminators

  • Daowen QiuEmail author
  • Hongfeng Gan
  • Guangya Cai
  • Mateus Paulo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)


We discuss the problem of designing an unambiguous programmable discriminator for mixed quantum states. We prove that there does not exist such a universal unambiguous programmable discriminator for mixed quantum states that has two program registers and one data register. However, we find that we can use the idea of programmable discriminator to unambiguously discriminate mixed quantum states. The research shows that by using such an idea, when the success probability for discrimination reaches the upper bound, the success probability is better than what we do not use the idea to do, except for some special cases.


Unambiguous discrimination Mixed quantum state Programmable discriminator 



This work is supported in part by the National Natural Science Foundation (Nos. 61572532, 61272058), the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011), and the Fundamental Research Funds for the Central Universities of China (Nos. 17lgjc24) and Mateus and Qiu are also funded by FCT project UID/EEA/50008/2013.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Ivanovic, D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223–229 (1998)CrossRefGoogle Scholar
  8. 8.
    Qiu, D.: Upper bound on the success probability for unambiguous discrimination. Phy. Lett. A 303, 140–146 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Qiu, D.: Upper bound on the success probability of separation among quantum states. J. Phys. A Math. Gen. 35, 6931 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chefles, A.: Quantum state discrimination. Contemp. Phys. 41, 401–424 (2000)CrossRefGoogle Scholar
  11. 11.
    Bergou, J.A., Herzog, U., Hillery, M.: 11 discrimination of quantum states. In: Paris, M., Řeháček, J. (eds.) Quantum State Estimation. Lecture Notes in Physics, vol. 649, pp. 417–465. Springer, Berlin (2004). Scholar
  12. 12.
    Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fiurášek, J., Ježek, M.: Optimal discrimination of mixed quantum states involving inconclusive results. Phys. Rev. A 67, 012321 (2003)CrossRefGoogle Scholar
  14. 14.
    Feng, Y., Duan, R., Ji, Z.: Condition and capability of quantum state separation. Phys. Rev. A 72, 012313 (2005)CrossRefGoogle Scholar
  15. 15.
    Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Raynal, P., Lütkenhaus, N.: Optimal unambiguous state discrimination of two density matrices: lower bound and class of exact solutions. Phys. Rev. A 72, 022342 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhou, X., Zhang, Y., Guo, G.C.: Unambiguous discrimination of mixed states: a description based on system-ancilla coupling. Phys. Rev. A 75, 052314 (2007)CrossRefGoogle Scholar
  18. 18.
    Herzog, U.: Optimum unambiguous discrimination of two mixed states and application to a class of similar states. Phys. Rev. A 75, 052309 (2007)CrossRefGoogle Scholar
  19. 19.
    Kleinmann, M., Kampermann, H., Bruß, D.: Unambiguous discrimination of mixed quantum states: optimal solution and case study. Phys. Rev. A 81, 020304 (2010)CrossRefGoogle Scholar
  20. 20.
    Bergou, J.A., Hillery, M.: Universal programmable quantum state discriminator that is optimal for unambiguously distinguishing between unknown states. Phys. Rev. Lett. 94, 160501 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Ying, M., Qiao, B.: Universal programmable devices for unambiguous discrimination. Phys. Rev. A 74, 042308 (2006)CrossRefGoogle Scholar
  22. 22.
    Bergou, J.A., Bužek, V., Feldman, E., Herzog, U., Hillery, M.: Programmable quantum-state discriminators with simple programs. Phys. Rev. A 73, 062334 (2006)CrossRefGoogle Scholar
  23. 23.
    He, B., Bergou, J.A.: Programmable unknown quantum-state discriminators with multiple copies of program and data: a Jordan-basis approach. Phys. Rev. A 75, 032316 (2007)CrossRefGoogle Scholar
  24. 24.
    Sentís, G., Bagan, E., Calsamiglia, J., Muñoz-Tapia, R.: Multicopy programmable discrimination of general qubit states. Phys. Rev. A 82, 042312 (2010)CrossRefGoogle Scholar
  25. 25.
    Zhou, T., Cui, J.X., Wu, X., Long, G.L.: Multicopy programmable discriminators between two unknown qubit states with group-theoretic approach. Quantum Inf. Comput. 12, 1017–1033 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zhou, T.: Unambiguous discrimination between two unknown qudit states. Quantum Inf. Process. 11, 1669–1684 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhou, T.: Success probabilities for universal unambiguous discriminators between unknown pure states. Phys. Rev. A 89, 014301 (2014)CrossRefGoogle Scholar
  28. 28.
    Jafarizadeh, M.A., Mahmoudi, P., Akhgar, D., Faizi, E.: Designing an optimal, universal, programmable, and unambiguous discriminator for N unknown qubits. Phys. Rev. A 96, 052111 (2017)CrossRefGoogle Scholar
  29. 29.
    Qiu, D.: Minimum-error discrimination between mixed quantum states. Phys. Rev. A 77, 012328 (2008)CrossRefGoogle Scholar
  30. 30.
    Qiu, L., Li, L.: Minimum-error discrimination of quantum states: bounds and comparisons. Phys. Rev. A 81, 042329 (2010)CrossRefGoogle Scholar
  31. 31.
    Qiu, D., Li, L.: Relation between minimum-error discrimination and optimum unambiguous discrimination. Phys. Rev. A 82, 032333 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daowen Qiu
    • 1
    • 2
    Email author
  • Hongfeng Gan
    • 1
  • Guangya Cai
    • 1
  • Mateus Paulo
    • 2
  1. 1.Institute of Computer Science Theory, School of Data and Computer ScienceSun Yat-Sen UniversityGuangzhouChina
  2. 2.Instituto de Telecomunicações, Departamento de MatemáticaInstituto Superior TécnicLisbonPortugal

Personalised recommendations