Advertisement

Solving Bi-criteria Maximum Diversity Problem with Multi-objective Multi-level Algorithm

  • Li-Yuan Xue
  • Rong-Qiang Zeng
  • Hai-Yun Xu
  • Yi Wen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)

Abstract

The multi-level paradigm is a simple and useful approach to tackle a number of combinatorial optimization problems. In this paper, we investigate a multi-objective multi-level algorithm to solve the bi-criteria maximum diversity problem. The computational results indicate that the proposed algorithm is very competitive in comparison with the original multi-objective optimization algorithms.

Keywords

Bi-objective optimization Hypervolume contribution Indicator Multi-level approach Local search Maximum diversity problem 

Notes

Acknowledgments

The work in this paper was supported by the Fundamental Research Funds for the Central Universities (Grant No. A0920502051722-53) and supported by the West Light Foundation of Chinese Academy of Science (Grant No: Y4C0011001).

References

  1. 1.
    Alidaee, B., Kochenberger, G.A., Ahmadian, A.: 0-1 quadratic programming approach for the optimal solution of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994)CrossRefGoogle Scholar
  2. 2.
    Aringhieri, R., Cordone, R.: Comparing local search metaheuristics for the maximum diversity problem. J. Oper. Res. Soc. 62(2), 266–280 (2011)CrossRefGoogle Scholar
  3. 3.
    Basseur, M., Liefooghe, A., Le, K., Burke, E.: The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems. J. Heuristics 18(2), 263–296 (2012)CrossRefGoogle Scholar
  4. 4.
    Basseur, M., Zeng, R.-Q., Hao, J.-K.: Hypervolume-based multi-objective local search. Neural Comput. Appl. 21(8), 1917–1929 (2012)CrossRefGoogle Scholar
  5. 5.
    Benlic, U., Hao, J.-K.: An effective multilevel tabu search approach for balanced graph partitioning. Comput. Oper. Res. 38, 1066–1075 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benlic, U., Hao, J.-K.: A multilevel memetic approach for improving graph k-partitions. IEEE Trans. Evol. Comput. 15(2), 624–642 (2011)CrossRefGoogle Scholar
  7. 7.
    Benlic, U., Hao, J.-K.: Breakout local search for the max-cut problem. Eng. Appl. Artif. Intell. 26, 1162–1173 (2013)CrossRefGoogle Scholar
  8. 8.
    Brimberg, J., Mladenovic, N., Urosevic, D., Ngai, E.: Variable neighborhood search for the heaviest k-subgraph. Comput. Oper. Res. 36(11), 2885–2891 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-36797-2CrossRefzbMATHGoogle Scholar
  10. 10.
    Freitas, A., Guimaraes, F., Silva, R.C.P.: Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optim. Lett. 8(2), 705–714 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gallego, M., Duarte, A., Laguna, M., Marti, R.: Hybrid heuristics for the maximum diversity problem. Comput. Optim. Appl. 200(1), 36–44 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Liefooghe, A., Verel, S., Paquete, L., Hao, J.-K.: Experiments on local search for bi-objective unconstrained binary quadratic programming. In: Proceedings of the 8th International Conference on Evolutionary Multi-criterion Optimization (EMO 2015), Guimarães, Portugal, pp. 171–186 (2015)Google Scholar
  14. 14.
    Lü, Z., Glover, F., Hao, J.-K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Optim. Lett. 189(1), 371–383 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wang, Y., Hao, J., Glover, F., Lü, Z.: A tabu search based memetic algorithm for the maximum diversity problem. Eng. Appl. Artif. Intell. 27, 103–114 (2014)CrossRefGoogle Scholar
  17. 17.
    Wu, Q., Wang, Y., Lü, Z.: A tabu search based hybrid evolutionary algorithm for the max-cut problem. Appl. Soft Comput. 34, 827–837 (2015)CrossRefGoogle Scholar
  18. 18.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Evol. Comput. 3, 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Li-Yuan Xue
    • 1
  • Rong-Qiang Zeng
    • 2
    • 3
  • Hai-Yun Xu
    • 3
  • Yi Wen
    • 3
  1. 1.EHF Key Laboratory of Science, School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.School of MathematicsSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.Chengdu Library and Information CenterChinese Academy of SciencesChengduPeople’s Republic of China

Personalised recommendations