Advertisement

Cross-Domain Attribute Representation Based on Convolutional Neural Network

  • Guohui Zhang
  • Gaoyuan Liang
  • Fang Su
  • Fanxin Qu
  • Jing-Yan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)

Abstract

In the problem of domain transfer learning, we learn a model for the prediction in a target domain from the data of both some source domains and the target domain, where the target domain is in lack of labels while the source domain has sufficient labels. Besides the instances of the data, recently the attributes of data shared across domains are also explored and proven to be very helpful to leverage the information of different domains. In this paper, we propose a novel learning framework for domain-transfer learning based on both instances and attributes. We proposed to embed the attributes of different domains by a shared convolutional neural network (CNN), learn a domain-independent CNN model to represent the information shared by different domains by matching across domains, and a domain-specific CNN model to represent the information of each domain. The concatenation of the three CNN model outputs is used to predict the class label. An iterative algorithm based on gradient descent method is developed to learn the parameters of the model. The experiments over benchmark datasets show the advantage of the proposed model.

Keywords

Convolutional neural network Domain-Transfer learning Attribute embedding 

References

  1. 1.
    Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, manin products, and rota–baxter operators. Int. Math. Res. Not. 2013(3), 485–524 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, C., Guo, L., Ni, X.: Generalizations of the classical Yang-Baxter equation and O-operators. J. Math. Phys. 52(6), 063515 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bickel, S.: ECML-PKDD discovery challenge 2006 overview. In: ECML-PKDD Discovery Challenge Workshop, pp. 1–9 (2006)Google Scholar
  4. 4.
    Chen, Y., Khandaker, M., Wang, Z.: Pinpointing vulnerabilities. In: Proceedings of the 12th ACM Asia Conference on Computer and Communications Security, pp. 334–345. ACM, Abu Dhabi (2017)Google Scholar
  5. 5.
    Chen, Y., Khandaker, M., Wang, Z.: Secure in-cache execution. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 381–402. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66332-6_17CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 50–61. ACM, New Orleans (2016)Google Scholar
  7. 7.
    Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel live patching. In: Proceedings of the 26th USENIX Security Symposium (USENIX Security 2017). USENIX Association, Vancouver, BC, August 2017Google Scholar
  8. 8.
    Cui, P., Liu, H., He, J., Altintas, O., Vuyyuru, R., Rajan, D., Camp, J.: Leveraging diverse propagation and context for multi-modal vehicular applications. In: 2013 IEEE 5th International Symposium on Wire-less Vehicular Communications (WiVeC), pp. 1–5. IEEE (2013)Google Scholar
  9. 9.
    Ding, M., Fan, G.: Articulated Gaussian kernel correlation for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 57–64 (2015)Google Scholar
  10. 10.
    Ding, M., Fan, G.: Generalized sum of gaussians for real-time human pose tracking from a single depth sensor. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 47–54. IEEE (2015)Google Scholar
  11. 11.
    Ding, M., Fan, G.: Articulated and generalized Gaussian kernel correlation for human pose estimation. IEEE Trans. Image Process. 25(2), 776–789 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learning convolutional neural network to maximize pos@ top performance measure. In: ESANN 2017 – Proceedings, pp. 589–594 (2016)Google Scholar
  13. 13.
    Geng, Y., et al.: A novel image tag completion method based on convolutional neural transformation. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 539–546. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68612-7_61CrossRefGoogle Scholar
  14. 14.
    Jin, Y., Wang, T., Zhang, H., Zhang, Y., Zhao, J., Tong, R.: Localized quasi(bi) harmonic field and its applications. J. Adv. Mech. Des. Syst. Manuf. 11(4), JAMDSM0047 (2017)CrossRefGoogle Scholar
  15. 15.
    Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: Deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)Google Scholar
  16. 16.
    Liu, H., He, J., Cui, P., Camp, J., Rajan, D.: Astra: application of sequential training to rate adaptation. In: 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2012, pp. 443–451. IEEE (2012)Google Scholar
  17. 17.
    Ni, X., Bai, C.: Prealternative algebras and prealternative bialgebras. Pac. J. Math. 248(2), 355–391 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ni, X., Bai, C.: Pseudo-hessian lie algebras and l-dendriform bialgebras. J. Algebra 400, 273–289 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40 (2017)CrossRefGoogle Scholar
  20. 20.
    Shao, H., Chen, S., Zhao, J.Y., Cui, W.C., Yu, T.S.: Face recognition based on subset selection via metric learning on manifold. Front. Inf. Technol. Electron. Eng. 16(12), 1046–1058 (2015)CrossRefGoogle Scholar
  21. 21.
    Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L., Gao, W.: Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1167–1181 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Chen, Y., Wang, Z., Qi, Y., Zhou, Y.: SecPod: a framework for virtualization-based security systems. In: Proceedings of the 2015 USENIX Annual Technical Conference, pp. 347–360 (2015)Google Scholar
  23. 23.
    Yang, L., Zhang, J.: Automatic transfer learning for short text mining. Eurasip J. Wirel. Commun. Netw. 2017(1), 42 (2017)CrossRefGoogle Scholar
  24. 24.
    Yu, T., Yan, J., Zhao, J., Li, B.: Joint cuts and matching of partitions in one graph. arXiv preprint arXiv:1711.09584 (2017)
  25. 25.
    Zhang, G., et al.: Learning convolutional ranking-score function by query preference regularization. In: Yin, H., Gao, Y., Chen, S., Wen, Y., Cai, G., Gu, T., Du, J., Tallón-Ballesteros, A.J., Zhang, M. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 1–8. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68935-7_1CrossRefGoogle Scholar
  26. 26.
    Zhang, L., Yang, J., Zhang, D.: Domain class consistency based transfer learning for image classification across domains. Inf. Sci. 418–419, 242–257 (2017)CrossRefGoogle Scholar
  27. 27.
    Zhou, L., Lin, Y., Feng, B., Zhao, J., Tang, J.: Phylogeny analysis from gene-order data with massive duplications. BMC Genom. 18(7), 13 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guohui Zhang
    • 1
  • Gaoyuan Liang
    • 2
  • Fang Su
    • 3
  • Fanxin Qu
    • 4
  • Jing-Yan Wang
    • 5
  1. 1.Huawei Technologies Co., LtdShanghaiChina
  2. 2.Jiangsu University of TechnologyChangzhouChina
  3. 3.Shaanxi University of Science and TechnologyXi’anChina
  4. 4.Northwestern Polytechnical UniversityXi’anChina
  5. 5.Provincial Key Laboratory for Computer Information Processing TechnologySoochow UniversitySuzhouChina

Personalised recommendations