Advertisement

Natura Fecit Saltum: Punctuationalism Pervades the Natural Sciences

  • Graham P. Wallis
Chapter

Abstract

Despite parallel revolutions of uniformitarianism in geology and gradualism in biology c200 years ago, it is now clear that rare events of large effect prevail in the natural world. While astronomical and geological phenomena are more overt (e.g. asteroid impact, supervolcanoes, earthquakes, tsunami), the general and widespread prevalence of major genetic, ecological and climatic events, and their long-term effects on life on Earth is becoming more widely appreciated. Biogeography abounds with examples of rare dispersal events shaping the biota of volcanic islands; ecological studies are showing us how adaptation can happen rapidly in association with habitat change; genomic studies show that major adaptations and speciation can happen rapidly through selection on just a few genetic variants; ecology shows us how tipping points can lead to major and irreversible shifts in ecosystems; climate change is exacerbating the frequency and degree of extreme weather events all over the globe. An unfortunate corollary of climate change is that the long-term integrated effects of global warming are experienced most strongly in connection with the most extreme events.

Keywords

Black swans Climate change Evolution Geology Macroevolution Punctuated equilibrium 

References

  1. Ager DV (1973) The nature of the stratigraphical record. Halsted (Wiley) Press, New YorkGoogle Scholar
  2. Alberti M (2015) Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol Evol 30:115–126CrossRefGoogle Scholar
  3. Anderson SC, Branch TA, Cooper AB, Dulvy NK (2017) Black-swan events in animal populations. Proc Natl Acad Sci USA 114:3252–3257PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32PubMedCrossRefPubMedCentralGoogle Scholar
  5. Atkinson QD, Meade A, Venditti C, Greenhill SJ, Pagel M (2008) Languages evolve in punctuational bursts. Science 319:588PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aykanat T, Thrower FP, Heath DD (2011) Rapid evolution of osmoregulatory function by modification of gene transcription in steelhead trout. Genetica 139:233–242PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bardeen CG, Garcia RR, Toon OB, Conley AJ (2017) On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proc Natl Acad Sci USA 114:E7415–E7424PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–723PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bassis JN, Petersen SV, Cathles LM (2017) Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542:332–334PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baynes ERC, Attal M, Niedermann S, Kirstein LA, Dugmore AJ, Naylor M (2015) Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland. Proc Natl Acad Sci USA 112:2355–2360PubMedCrossRefPubMedCentralGoogle Scholar
  11. Becks L, Ellner SP, Jones LE, Hairston NG (2012) The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol Lett 15:492–501PubMedCrossRefPubMedCentralGoogle Scholar
  12. Behrman EL, Howick VM, Kapun M, Staubach F, Bergland AO, Petrov DA, Lazzaro BP, Schmidt PS (2017) Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster. Proc R Soc B 285:20172599CrossRefGoogle Scholar
  13. Borrell B (2013) A big fight over little fish. Nature 493:597–598PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA, Gienapp P, Gosler AG, McMahon K, Poissant J, Verhagen I, Groenen MAM, van Oers K, Sheldon BC, Visser ME, Slate J (2017) Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358:365–368PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Lim ZW, Bezault E, Turner-Maier J, Johnson J, Alcazar R, Noh HJ, Russell P, Aken B, Alfoldi J, Amemiya C, Azzouzi N, Baroiller J-F, Barloy-Hubler F, Berlin A, Bloomquist R, Carleton KL, Conte MA, D’Cotta H, Eshel O, Gaffney L, Galibert F, Gante HF, Gnerre S, Greuter L, Guyon R, Haddad NS, Haerty W, Harris RM, Hofmann HA, Hourlier T, Hulata G, Jaffe DB, Lara M, Lee AP, MacCallum I, Mwaiko S, Nikaido M, Nishihara H, Ozouf-Costaz C, Penman DJ, Przybylski D, Rakotomanga M, Renn SCP, Ribeiro FJ, Ron M, Salzburger W, Sanchez-Pulido L, Santos ME, Searle S, Sharpe T, Swofford R, Tan FJ, Williams L, Young S, Yin S, Okada N, Kocher TD, Miska EA, Lander ES, Venkatesh B, Fernald RD, Meyer A, Ponting CP, Streelman JT, Lindblad-Toh K, Seehausen O, Di Palma F (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381Google Scholar
  17. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bumpus HC (1898) The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus (A fourth contribution to the study of variation.). Biol Lect Woods Hole Mar Biol Lab 1898:209–225Google Scholar
  19. Burridge CP, McDowall RM, Craw D, Wilson MVH, Waters JM (2012) Marine dispersal as a pre-requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. J Biogeogr 39:306–321CrossRefGoogle Scholar
  20. Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV (2017) Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:495–498PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carlquist S, Baldwin BG, Carr GD (2003) Tarweeds and silverswords: evolution of the Madiinae (Asteraceae). Missouri Botanical Gardens Press, St. Louis, MO, p 293Google Scholar
  22. Carlton JT, Chapman JW, Geller JB, Miller JA, Carlton DA, McCuller MI, Treneman NC, Steves BP, Ruiz GM (2017) Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402–1406PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393CrossRefGoogle Scholar
  25. Cattau CE, Fletcher RJ, Kimball RT, Miller CW, Kitchens WM (2017) Rapid morphological change of a top predator with the invasion of a novel prey. Nat Ecol Evolut 2Google Scholar
  26. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096PubMedPubMedCentralGoogle Scholar
  27. Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jónsson B, Schluter D, Bell MA, Kingsley DM (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327:302–305PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367:33–40CrossRefGoogle Scholar
  29. Charlat S, Hurst GDD, Merçot H (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  30. Charlesworth B, Lande R, Slatkin M (1982) A neo-darwinian commentary on macroevolution. Evolution 36:474–498PubMedCrossRefGoogle Scholar
  31. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307:1928–1933PubMedCrossRefGoogle Scholar
  32. Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GA (2017) Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542:344–347PubMedCrossRefPubMedCentralGoogle Scholar
  33. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc., Sunderland (MA)Google Scholar
  34. Craw D, Upton P, Burridge CP, Wallis GP, Waters JM (2016) Rapid biological speciation driven by tectonic evolution in New Zealand. Nat Geosci 9:140–145CrossRefGoogle Scholar
  35. Crossley MS, Chen YH, Groves RL, Schoville SD (2017) Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol 26:6284–6300PubMedCrossRefGoogle Scholar
  36. Darimont CT, Fox CH, Bryan HM, Reimchen TE (2015) The unique ecology of human predators. Science 349:858–860PubMedCrossRefGoogle Scholar
  37. Darwin C (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  38. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DST, Ferguson LC, Martin SH, Salazar C, Lewis JJ, Adler S, Ahn S-J, Baker DA, Baxter SW, Chamberlain NL, Chauhan R, Counterman BA, Dalmay T, Gilbert LE, Gordon K, Heckel DG, Hines HM, Hoff KJ, Holland PWH, Jacquin-Joly E, Jiggins FM, Jones RT, Kapan DD, Kersey P, Lamas G, Lawson D, Mapleson D, Maroja LS, Martin A, Moxon S, Palmer WJ, Papa R, Papanicolaou A, Pauchet Y, Ray DA, Rosser N, Salzberg SL, Supple MA, Surridge A, Tenger-Trolander A, Vogel H, Wilkinson PA, Wilson D, Yorke JA, Yuan F, Balmuth AL, Eland C, Gharbi K, Thomson M, Gibbs RA, Han Y, Jayaseelan JC, Kovar C, Mathew T, Muzny DM, Ongeri F, Pu L-L, Qu J, Thornton RL, Worley KC, Wu Y-Q, Linares M, Blaxter ML, ffrench-Constant RH, Joron M, Kronforst MR, Mullen SP, Reed RD, Scherer SE, Richards S, Mallet J, McMillan WO, Jiggins CD (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98Google Scholar
  39. de Amorim ME, Schoener TW, Santoro GRCC, Lins ACR, Piovia-Scott J, Brandão RA (2017) Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc Natl Acad Sci USA 114:8812–8816CrossRefGoogle Scholar
  40. Defrance D, Ramstein G, Charbit S, Vrac M, Famien A, Sultan B, Swingedouw D, Dumas C, Gemenne F, Alvarez-Solas J, Vanderlinden J-P (2017) Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proc Natl Acad Sci USA 114:6533–6538PubMedCrossRefGoogle Scholar
  41. DeLong JP, Forbes VE, Galic N, Gibert JP, Laport RG, Phillips JS, Vavra JM (2016) How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes. Ecol Evol 6:573–581PubMedCrossRefPubMedCentralGoogle Scholar
  42. Délye C, Jasieniuk M, Le Corre V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649–658PubMedCrossRefGoogle Scholar
  43. Dion-Côté A-M, Symonová R, Lamaze FC, Pelikánová S, Ráb P, Bernatchez L (2017) Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation. Mol Ecol 26:178–192PubMedCrossRefGoogle Scholar
  44. Dittrich-Reed DR, Fitzpatrick BM (2013) Transgressive hybrids as hopeful monsters. Evol Biol 40:310–315PubMedCrossRefGoogle Scholar
  45. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  46. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper and Co, San Francisco, pp 82–115Google Scholar
  47. Ellner SP, Geber MA, Hairston NG (2011) Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett 14:603–614PubMedCrossRefGoogle Scholar
  48. Emerson BC (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol 11:951–966PubMedCrossRefGoogle Scholar
  49. Evans PD, Mekel-Bobrov N, Vallender EJ, Hudson RR, Lahn BT (2006) Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc Natl Acad Sci USA 103:18178–18183PubMedCrossRefGoogle Scholar
  50. Feng Y-J, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P (2017) Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA 114:E5864–5870PubMedCrossRefGoogle Scholar
  51. Ferris KG, Barnett LL, Blackman BK, Willis JH (2017) The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol 26:208–224PubMedCrossRefGoogle Scholar
  52. Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, Jiang X, Hall AB, Catteruccia F, Kakani E, Mitchell SN, Wu Y-C, Smith HA, Love RR, Lawniczak MK, Slotman MA, Emrich SJ, Hahn MW, Besansky NJ (2015) Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347:42CrossRefGoogle Scholar
  53. Franks SJ, Weis AE (2008) A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. J Evol Biol 21:1321–1334PubMedCrossRefGoogle Scholar
  54. Freed LA, Conant S, Fleischer RC (1987) Evolutionary ecology and radiation of Hawaiian passerine birds. Trends Ecol Evol 2:196–203PubMedCrossRefGoogle Scholar
  55. Garner AJ, Mann ME, Emanuel KA, Kopp RE, Lin N, Alley RB, Horton BP, DeConto RM, Donnelly JP, Pollard D (2017) Impact of climate change on New York City’s coastal flood hazard: increasing flood heights from the preindustrial to 2300 CE. Proc Natl Acad Sci USA 114:11861–11866PubMedCrossRefGoogle Scholar
  56. Gibbs G (2016) Ghosts of Gondwana: the history of life in New Zealand. Potton & Burton Ltd, NelsonGoogle Scholar
  57. Gillespie JH (1984) The molecular clock may be an episodic clock. Proc Natl Acad Sci USA 81:8009–8013PubMedCrossRefGoogle Scholar
  58. Gillis MK, Walsh MR (2017) Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin. Proc R Soc B 284:20170814PubMedCrossRefGoogle Scholar
  59. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, CTGoogle Scholar
  60. Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA (2017) Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 26:5974–5988PubMedCrossRefGoogle Scholar
  61. Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM (2017) The dynamics of molecular evolution over 60,000 generations. Nature 551:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gordon SP, Reznick D, Arendt JD, Roughton A, Ontiveros Hernandez MN, Bentzen P, López-Sepulcre A (2015) Selection analysis on the rapid evolution of a secondary sexual trait. Proc R Soc B 282:20151244PubMedCrossRefGoogle Scholar
  63. Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiology 61:119–130CrossRefGoogle Scholar
  64. Gould SJ (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  65. Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115–151CrossRefGoogle Scholar
  66. Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227PubMedCrossRefGoogle Scholar
  67. Graham IJ (2008) A continent on the move: New Zealand geoscience into the 21st century. The Geological Society of New Zealand in Association with GNS Science, Wellington, p 388Google Scholar
  68. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313:224–226PubMedCrossRefGoogle Scholar
  69. Grant PR, Grant BR (2014) 40 years of evolution. Darwin’s finches on Daphne Major Island. Princeton University Press, Princeton, NJCrossRefGoogle Scholar
  70. Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J (2017) Evolution caused by extreme events. Philos Trans R Soc B 372:20160146CrossRefGoogle Scholar
  71. Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 5:e1000326PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hamling IJ, Hreinsdóttir S, Clark K, Elliott J, Liang C, Fielding E, Litchfield N, Villamor P, Wallace L, Wright TJ, D’Anastasio E, Bannister S, Burbidge D, Denys P, Gentle P, Howarth J, Mueller C, Palmer N, Pearson C, Power W, Barnes P, Barrell DJA, Van Dissen R, Langridge R, Little TA, Nicol A, Pettinga J, Rowland J, Stirling M (2017) Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science 356:154CrossRefGoogle Scholar
  73. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hodell DA (2016) The smoking gun of the ice ages. Science 354:1235–1236PubMedCrossRefGoogle Scholar
  76. Hoffman AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Syst 39:21–42CrossRefGoogle Scholar
  77. Hopkins MJ, Lidgard S (2012) Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proc Natl Acad Sci USA 109:20520–20525PubMedCrossRefGoogle Scholar
  78. Hsieh C-H, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435:336–340PubMedCrossRefGoogle Scholar
  79. Hsü KJ, Garrison RE, Montadert L, B KR, Bernoulli D, Mèlierés F, Cita MB, Müller C, Erickson A, Wright R (1977) History of the Mediterranean salinity crisis. Nature 267:399–403Google Scholar
  80. Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A (2017) Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol 26:6621–6633PubMedCrossRefPubMedCentralGoogle Scholar
  81. Huerta-Sánchez E, Jin X, Asan Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang Luosang J, Cuo ZXP, Li K, Gao G, Yin Y, Wang W, Zhang X-C, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–197PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, C-y Kuo, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BT, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377PubMedCrossRefPubMedCentralGoogle Scholar
  83. Huxley TH (1906) Darwin on the origin of species Man’s place in nature and other essays. J M Dent & Sons Ltd., London, pp 299–336Google Scholar
  84. Jackson JBC, Cheetham AH (1999) Tempo and mode of speciation in the sea. Trends Ecol Evol 14:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  85. Jain K, Stephan W (2017) Modes of rapid polygenic adaptation. Mol Biol Evol 34:3169–3317PubMedCrossRefPubMedCentralGoogle Scholar
  86. Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–777CrossRefGoogle Scholar
  87. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Platform BIGS, Team WGA, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61PubMedCrossRefPubMedCentralGoogle Scholar
  88. Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, Wilkinson PA, Salazar C, Davidson C, Clark R, Quail MA, Beasley H, Glithero R, Lloyd C, Sims S, Jones MC, Rogers J, Jiggins CD, French-Constant RH (2011) Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477:203–206Google Scholar
  89. Kintisch E (2017) Meltdown. Science 355:788–791PubMedPubMedCentralGoogle Scholar
  90. Kolodny O, Creanza N, Feldman MW (2015) Evolution in leaps: the punctuated accumulation and loss of cultural innovations. Proc Natl Acad Sci USA 112:E6762–E6769PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kronforst MR, Papa R (2015) The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 200:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ksepka DT, Stidham TA, Williamson TE (2017) Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction. Proc Natl Acad Sci USA 114:8047–8052PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kuhn TS (1996) The structure of scientific revolutions. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  94. Lack DL (1947) Darwin’s finches. Cambridge University Press, CambridgeGoogle Scholar
  95. Lallensack R (2018) Evology. Nature 554:1–40CrossRefGoogle Scholar
  96. Lamichhaney S, Bergland J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin C-J, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lamichhaney S, Han F, Bergland J, Wang C, Almén MS, Webster MT, Grant BR, Grant PR, Andersson L (2016) A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352:470–474PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR (2018) Rapid speciation in Darwin’s finches. Science 359:224–228PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lamsdell JC, Selden PA (2017) From success to persistence: identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution 71:95–110PubMedCrossRefPubMedCentralGoogle Scholar
  100. Landis MJ, Schraiber JG (2017) Pulsed evolution shaped modern vertebrate body sizes. Proc Natl Acad Sci USA 114:13224–13229PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lang SA, Saglam N, Kawash J, Shain DH (2017) Punctuated invasion of water, ice, snow and terrestrial ecozones by segmented worms (Oligochaeta: Enchytraeidae: Mesenchytraeus). Proc R Soc B 284:20171081PubMedCrossRefPubMedCentralGoogle Scholar
  102. Larsen IJ, Lamb MP (2016) Progressive incision of the Channeled Scablands by outburst floods. Nature 538:229–232PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65:2229–2244PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lewis H (1966) Speciation in flowering plants. Science 152:167–172PubMedCrossRefPubMedCentralGoogle Scholar
  105. Lin N, Kopp RE, Horton BP, Donnelly JP (2016) Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc Natl Acad Sci USA 113:12071–12075PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ling SD, Johnson CR, Frusher SD, Ridgway KR (2009) Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Natl Acad Sci USA 106:22341–22345PubMedCrossRefPubMedCentralGoogle Scholar
  107. Littleford-Colquhoun BL, Clemente C, Whiting MJ, Ortiz-Barrientos D, Frère CH (2017) Archipelagos of the Anthropocene: rapid and extensive differentiation of native terrestrial vertebrates in a single metropolis. Mol Ecol 26:2466–2481PubMedCrossRefPubMedCentralGoogle Scholar
  108. Liu L, Zhang J, Rheindt FE, Lei F, Qu Y, Wang Y, Zhang Y, Sullivan C, Nie W, Wang J, Yang F, Chen J, Edwards SV, Meng J, Wu S (2017) Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc Natl Acad Sci USA E7282–E7290Google Scholar
  109. Lyell C (1830–1833) Principles of geology, being an attempt to explain the former changes of the Earth’s surface by reference to causes now in operation. John Murray, LondonGoogle Scholar
  110. MacIver MA, Schmitz L, Mugan U, Murphey TD, Mobley CD (2017) Massive increase in visual range preceded the origin of terrestrial vertebrates. Proc Natl Acad Sci USA 114:E2375–E2384PubMedCrossRefPubMedCentralGoogle Scholar
  111. Mallet J (2007) Hybrid speciation. Nature 446:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mann A (2018) Cataclysm’s end. Nature 553:393–395PubMedCrossRefPubMedCentralGoogle Scholar
  113. Margres MJ, Wray KP, Hassinger ATB, Ward MJ, McGivern JJ, Lemmon EM, Lemmon AR, Rokyta DR (2017) Quantity, not quality: rapid adaptation in a polygenic trait proceeded exclusively through expression differentiation. Mol Biol Evol 34:3099–3110PubMedCrossRefGoogle Scholar
  114. Marques DA, Lucek K, Haesler MP, Feller AF, Meier JI, Wagner CE, Excoffier L, Seehausen O (2017) Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Mol Ecol 26:7–24PubMedCrossRefPubMedCentralGoogle Scholar
  115. Martin A, Orgogozo V (2013) The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67:1235–1250PubMedGoogle Scholar
  116. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Harney E, Stewardson K, Fernandes D, Novak M, Sirak K, Gamba C, Jones ER, Llamas B, Dryomov S, Pickrel J, Arsuaga JL, Bermúdez de Castro JM, Carbonell E, Gerritsen F, Khokhlov A, Kuznetsov P, Lozano M, Meller H, Mochalov O, Moiseyev V, Rojo Guerra MA, Roodenberg J, Vergès JM, Krause J, Cooper A, Alt KW, Brown D, Anthony D, Lalueza-Fox C, Haak W, Pinhasi R, Reich D (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503PubMedCrossRefPubMedCentralGoogle Scholar
  117. Mattsson M, Hood GR, Feder JL, Ruedas LA (2015) Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States. Ecol Evol 5:5823–5837PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  119. Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge, MACrossRefGoogle Scholar
  120. McDowall RM (1996) Volcanism and freshwater fish biogeography in the northeastern North Island of New Zealand. J Biogeogr 23:139–148CrossRefGoogle Scholar
  121. McDowall RM (2000) The reed field guide to New Zealand freshwater fishes. Reed Publishing, AucklandGoogle Scholar
  122. McDowall RM (2003) Hawaiian biogeography and the islands’ freshwater fish fauna. J Biogeogr 30:703–710CrossRefGoogle Scholar
  123. McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn S-J, Arsala D, Benoit JB, Blackmon H, Bledsoe T, Bowsher JH, Busch A, Calla B, Chao H, Childers AK, Childers C, Clarke DJ, Cohen L, Demuth JP, Dinh H, Doddapaneni H, Dolan A, Duan JJ, Dugan S, Friedrich M, Glastad KM, Goodisman MAD, Haddad S, Han Y, Hughes DST, Ioannidis P, Johnston JS, Jones JW, Kuhn LA, Lance DR, Lee C-Y, Lee SL, Lin H, Lynch JA, Moczek AP, Murali SC, Muzny DM, Nelson DR, Palli SR, Panfilio KA, Pers D, Poelchau MF, Quan H, Qu J, Ray AM, Rinehart JP, Robertson HM, Roehrdanz R, Rosendale AJ, Shin S, Silva C, Torson AS, Vargas Jentzsch IM, Werren JH, Worley KC, Yocum G, Zdobnov EM, Gibbs RA, Richards S (2016) Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol 17:227PubMedCrossRefPubMedCentralGoogle Scholar
  124. Meier JI, Sousa VC, Marques DA, Selz OM, Wagner CE, Excoffier L, Seehausen O (2017) Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Mol Ecol 26:123–141PubMedCrossRefPubMedCentralGoogle Scholar
  125. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefPubMedCentralGoogle Scholar
  126. Moftakhari HR, Salvadori G, AghaKouchak A, Sanders BF, Matthew RA (2017) Compounding effects of sea level rise and fluvial flooding. Proc Natl Acad Sci USA 114:9785–9790PubMedCrossRefPubMedCentralGoogle Scholar
  127. Momigliano P, Jokinen H, Fraimout A, Florin A-B, Norkko A, Merilä J (2017) Extraordinarily rapid speciation in a marine fish. Proc Natl Acad Sci USA 114:6074–6079PubMedCrossRefPubMedCentralGoogle Scholar
  128. Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100:5268–5273PubMedCrossRefPubMedCentralGoogle Scholar
  129. Nandamuri SP, Yourick MR, Carleton KL (2017) Adult plasticity in African cichlids: Rapid changes in opsin expression in response to environmental light differences. Mol Ecol 26:6036–6052PubMedCrossRefPubMedCentralGoogle Scholar
  130. Neelin JD, Sahany S, Stechmann SN, Bernstein DN (2017) Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc Natl Acad Sci USA 114:1258–1263PubMedCrossRefPubMedCentralGoogle Scholar
  131. Nosil P (2012) Ecological speciation. Oxford University Press, OxfordCrossRefGoogle Scholar
  132. Novy A, Flory SL, Hartman JM (2013) Evidence for rapid evolution of phenology in an invasive grass. J Evol Biol 26:443–450PubMedCrossRefGoogle Scholar
  133. Ohno S (1970) Evolution by gene duplication. Springer, BerlinCrossRefGoogle Scholar
  134. Ortiz-Barrientos D, Engelstädter J, Rieseberg LH (2016) Recombination rate evolution and the origin of species. Trends Ecol Evol 31:226–236PubMedCrossRefGoogle Scholar
  135. Pagel M, Venditti C, Meade A (2006) Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119–121PubMedCrossRefGoogle Scholar
  136. Palumbi SR (2001a) The evolution explosion: how humans cause rapid evolutionary change. W W Norton & Co, New YorkGoogle Scholar
  137. Palumbi SR (2001b) Humans as the world’s greatest evolutionary force. Science 293:1786–1790PubMedCrossRefGoogle Scholar
  138. Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M (2017) The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 26:6384–6399PubMedCrossRefGoogle Scholar
  139. Peichel CL, Marques DA (2017) The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos Trans R Soc B 372:20150486CrossRefGoogle Scholar
  140. Pennell MW, Harmon LJ, Uyeda JC (2014) Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 29:23–32PubMedCrossRefGoogle Scholar
  141. Penny D (2017) Evolution now. XlibrisGoogle Scholar
  142. Penny D, Phillips MJ (2004) The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution? Trends Ecol Evol 19:516–522PubMedCrossRefGoogle Scholar
  143. Percival LME, Ruhl M, Hesselbo SP, Jenkyns HC, Mather TA, Whiteside JH (2017) Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc Natl Acad Sci USA 114:7929–7934PubMedCrossRefGoogle Scholar
  144. Pfennig KS, Kelly AL, Pierce AA (2016) Hybridization as a facilitator of species range expansion. Proc R Soc B 283Google Scholar
  145. Powell THQ, Hood GR, Murphy MO, Heilveil JS, Berlocher SH, Nosil P, Feder JL (2013) Genetic divergence along the speciation continuum: the transition from host race to species in Rhagoletis (Diptera: Tephritidae). Evolution 67:2561–2576PubMedCrossRefGoogle Scholar
  146. Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111PubMedCrossRefGoogle Scholar
  147. Provine WB (1971) The origins of theoretical population genetics. The University of Chicago Press, ChicagoGoogle Scholar
  148. Puritz JB, Keever CC, Addison JA, Byrne M, Hart MW, Grosberg RK, Toonen RJ (2012) Extraordinarily rapid life-history divergence between Cryptasterina sea star species. Proc R Soc B 279:3914–3922PubMedCrossRefGoogle Scholar
  149. Rabosky DL (2012) Positive correlation between diversification rates and phenotypic evolvability can mimic punctuated equilibrium on molecular phylogenies. Evolution 66:2622–2627PubMedCrossRefGoogle Scholar
  150. Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:1866–1875PubMedCrossRefGoogle Scholar
  151. Reed AJ, Mann ME, Emanuel KA, Lin N, Horton BP, Kemp AC, Donnelly JP (2015) Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era. Proc Natl Acad Sci USA 112:12610–12615PubMedCrossRefGoogle Scholar
  152. Rieseberg LH, Widmer A, Arntz AM, Burke JM (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc B 358:1141–1147CrossRefGoogle Scholar
  153. Rogers SM, Xu S, Schluter PM (2017) Introduction: integrative molecular ecology is rapidly advancing the study of adaptation and speciation. Mol Ecol 26:1–6PubMedCrossRefGoogle Scholar
  154. Rollins LA, Richardson MF, Shine R (2015) A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol Ecol 24:2264–2276PubMedCrossRefGoogle Scholar
  155. Rougier J, Sparks RSJ, Cashman KV, Brown SK (2018) The global magnitude-frequency relationship for large explosive volcanic eruptions. Earth Planet Sci Lett 482:621–629CrossRefGoogle Scholar
  156. Rubin CM, Horton BP, Sieh K, Pilarczyk JE, Daly P, Ismail N, Parnell AC (2017) Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nat Commun 8:16019PubMedCrossRefPubMedCentralGoogle Scholar
  157. Rudman SM, Kreitzman M, Chan KMA, Schluter D (2017) Evosystem services: rapid evolution and the provision of ecosystem services. Trends Ecol Evol 32:403–415PubMedCrossRefGoogle Scholar
  158. Ryan WBF, Pitman WC, Major CO, Shimkus K, Moskalenko V, Jones GA, Dimitrov P, Gorür N, Sakinc M, Yüce H (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126CrossRefGoogle Scholar
  159. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596PubMedCrossRefGoogle Scholar
  160. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348PubMedCrossRefGoogle Scholar
  161. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  162. Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci USA 106:9955–9962PubMedCrossRefGoogle Scholar
  163. Shugar DH, Clague JJ, Best JL, Schoof C, Willis MJ, Copland L, Roe GH (2017) River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat Geosci 10:370–375CrossRefGoogle Scholar
  164. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  165. Singh MS, Kuang Z, Maloney ED, Hannah WM, Wolding BO (2018) Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc Natl Acad Sci USA 115:11657–11662Google Scholar
  166. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedCrossRefGoogle Scholar
  167. Soltis PS, Soltis DE (2012) Polyploidy and genome evolution. Springer, HeidelbergCrossRefGoogle Scholar
  168. Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, Shih C-H, Nachman MW, Kohn MH (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21:1296–1301PubMedCrossRefPubMedCentralGoogle Scholar
  169. Stanley SM (1979) Macroevolution: pattern and process. Freeman, San FranciscoGoogle Scholar
  170. Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, van Praet S, Schaub M, Canessa S, Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuyt F, Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544:353–356PubMedCrossRefGoogle Scholar
  171. Stemshorn KC, Reed FA, Nolte AW, Tautz D (2011) Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol Ecol 20:1475–1491PubMedCrossRefGoogle Scholar
  172. Stordal F, Svensen HH, Aarnes I, Roscher M (2017) Global temperature response to century-scale degassing from the Siberian Traps Large igneous province. Palaeogeogr Palaeoclimatol Palaeoecol 471:96–107CrossRefGoogle Scholar
  173. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB (2014) Rapid evolution of a native species following invasion by a congener. Science 346:463–466PubMedCrossRefGoogle Scholar
  174. Szücs M, Vahsen ML, Melbourne BA, Hoover C, Weiss-Lehman C, Hufbauer RA (2017) Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc Natl Acad Sci USA 114:13501–13506PubMedCrossRefGoogle Scholar
  175. Tagliacollo VA, Roxo FF, Duke-Sylvester SM, Oliveira C, Albert JS (2015) Biogeographical signature of river capture events in Amazonian lowlands. J Biogeogr 42:2349–2362CrossRefGoogle Scholar
  176. Taylor CM, Belušić D, Guichard F, Parker DJ, Vischel T, Harris PP, Janicot S, Klein C, Panthou G (2017) Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 544:475–478PubMedCrossRefPubMedCentralGoogle Scholar
  177. Torres-Dowdall J, Pierotti MER, Harer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A (2017) Rapid and parallel adaptive evolution of the visual system of neotropical midas cichlid fishes. Mol Biol Evol 34:2469–2485PubMedCrossRefPubMedCentralGoogle Scholar
  178. Travis J, Coleman FC, Auster PJ, Cury PM, Estes JA, Orensanz J, Peterson CH, Power ME, Steneck RS, Wootton JT (2014) Integrating the invisible fabric of nature into fisheries management. Proc Natl Acad Sci USA 111:581–584PubMedCrossRefPubMedCentralGoogle Scholar
  179. Tzedakis PC, Crucifix M, Mitsui T, Wolff EW (2017) A simple rule to determine which insolation cycles lead to interglacials. Nature 542:427–432PubMedCrossRefPubMedCentralGoogle Scholar
  180. Ungerer MC, Baird SJE, Pan J, Riesberg LH (1998) Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci USA 95:11757–11762PubMedCrossRefPubMedCentralGoogle Scholar
  181. Uusi-Heikkila S, Sävilammi T, Leder E, Arlinghaus R, Primmer CR (2017) Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Mol Ecol 26:3954–3967PubMedCrossRefPubMedCentralGoogle Scholar
  182. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J (2011) The million-year wait for macroevolutionary bursts. Proc Natl Acad Sci USA 108:15908–15913PubMedCrossRefPubMedCentralGoogle Scholar
  183. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424PubMedCrossRefPubMedCentralGoogle Scholar
  184. van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:102–105Google Scholar
  185. Vrba ES (1980) Evolution, species and fossils: how does life evolve? S Afr J Sci 76:61–84Google Scholar
  186. Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Mol Ecol 18:3548–3580PubMedCrossRefPubMedCentralGoogle Scholar
  187. Wallis GP, Waters JM, Upton P, Craw D (2016) Transverse alpine speciation driven by glaciation. Trends Ecol Evol 31:916–926PubMedCrossRefPubMedCentralGoogle Scholar
  188. Waters JM, Craw D, Youngson JH, Wallis GP (2001) Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 55:1844–1851PubMedCrossRefPubMedCentralGoogle Scholar
  189. Weir JT, Haddrath O, Robertson HA, Colbourne RM, Baker AJ (2016) Explosive ice age diversification of kiwi. Proc Natl Acad Sci USA 113:E5580–E5587PubMedCrossRefPubMedCentralGoogle Scholar
  190. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172PubMedCrossRefPubMedCentralGoogle Scholar
  191. Wiens JA (1977) On competition and variable environments. Am Sci 65:590–597Google Scholar
  192. Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc Natl Acad Sci USA 108:1815–1820PubMedCrossRefPubMedCentralGoogle Scholar
  193. Winsor HL, Kovach RP, Allendorf FW (2017) Population genetics and demography unite ecology and evolution. Trends Ecol Evol 32:141–152CrossRefGoogle Scholar
  194. Witze A (2017) Ancient volcanoes exposed. Nature 543:295–296PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wright KM, Lloyd DG, Lowry DB, Macnair MR, Willis JH (2013) Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLoS Biol 11:e1001497PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedPubMedCentralGoogle Scholar
  197. Zeng L, Ming C, Li Y, Su L-Y, Su Y-H, Otecko NO, Liu H-Q, Wang M-S, Yao Y-G, Li H-P, Wu D-D, Zhang Y-P (2017) Rapid evolution of genes involved in learning and energy metabolism for domestication of the laboratory rat. Mol Biol Evol 34:3148–3153PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations