Role of Computational Modeling for Dose Determination

  • Ricardo Salvador
  • Dennis Q. Truong
  • Marom Bikson
  • Alexander Opitz
  • Jacek Dmochowski
  • Pedro C. MirandaEmail author


This chapter provides a broad introduction to computational models that inform and optimize tDCS for both clinical researchers and translational engineers. The first section introduces the rationale for modeling; the next two sections address technical features of modeling relevant to engineers (and to clinicians interested in the limitations of modeling); the following three sections address the use of modeling in clinical practice, and the final section illustrates the application of models in dose design through case studies. Computational “forward” models predict the flow of current throughout the head during tDCS, as with other brain stimulation techniques. Because the relationship between stimulation dose (defined as those electrode and waveform parameters controlled by the operator) and resulting brain current flow is complex and non-intuitive, computational forward models are essential to the rational design of stimulation protocols. Though model validation efforts are ongoing, these models already represent a standard tool to predict brain current flow and optimize tDCS dose, and so inform clinical practice and behavior research. Yet despite increased interest in tDCS modeling, as supported by the number of tDCS publications about or including a modeling component, access to modeling tools by clinicians remains highly limited. Ironically, much of the effort to enhance the relevance of modeling through increased sophistication (complexity) in fact hinders both reproduction and dissemination. This chapter therefore addresses not only the state-of-the-art in modeling techniques, but also how models can be immediately leveraged by researchers and clinicians.


Computational model Finite element method Optimization Targeting 


  1. Amassian, V. E., Eberle, L., Maccabee, P. J., & Cracco, R. Q. (1992). Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: The significance of fiber bending in excitation. Electroencephalography and Clinical Neurophysiology, 85(5), 291–301.PubMedCrossRefGoogle Scholar
  2. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., … Van der Vorst, H. (1993). Templates for the solution of linear systems: Building blocks for iterative methods (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
  3. Bashir, U., Mallia, A., Stirling, J., Joemon, J., MacKewn, J., Charles-Edwards, G., … Cook, G. J. (2015). PET/MRI in oncological imaging: State of the art. Diagnostica, 5(3), 333–357.CrossRefGoogle Scholar
  4. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode's position and size. Clinical Neurophysiology, 121(12), 1976–1978.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bikson, M., Dmochowski, J., & Rahman, A. (2013). The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimulation, 6(4), 704–705.PubMedCrossRefGoogle Scholar
  6. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557.(Pt 1, 175–190.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bortoletto, M., Rodella, C., Salvador, R., Miranda, P. C., & Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimulation, 9(4), 525–528.PubMedCrossRefGoogle Scholar
  9. Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M. F., … Poulet, E. (2012). Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. The American Journal of Psychiatry, 169(7), 719–724.PubMedCrossRefGoogle Scholar
  10. Brunoni, A. R., Shiozawa, P., Truong, D., Javitt, D. C., Elkis, H., Fregni, F., … Bikson, M. (2014). Understanding tDCS effects in schizophrenia: A systematic review of clinical data and an integrated computation modeling analysis. Expert Review of Medical Devices, 11(4), 383–394.PubMedCrossRefGoogle Scholar
  11. Dasilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dossantos, M. F., Spierings, E. L., … Fregni, F. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52(8), 1283–1295.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Datta, A., Baker, J. M., Bikson, M., & Fridriksson, J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 4(3), 6.CrossRefGoogle Scholar
  13. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009a). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.CrossRefGoogle Scholar
  14. Datta, A., Bikson, M., & Fregni, F. (2010). Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow. NeuroImage, 52(4), 1268–1278.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Datta, A., Elwassif, M., Battaglia, F., & Bikson, M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 5(2), 163–174.PubMedCrossRefGoogle Scholar
  16. Datta, A., Elwassif, M., & Bikson, M. (2009b). Bio-heat transfer model of transcranial DC stimulation: Comparison of conventional pad versus ring electrode. Paper presented at the 31st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Minneapolis.Google Scholar
  17. Datta, A., Krause, M. R., Pilly, P. K., Choe, J., Zanos, T. P., Thomas, C., & Pack, C. C. (2016). On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation. Paper presented at the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando.Google Scholar
  18. Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 3, 91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dmochowski, J. P., Datta, A., Bikson, M., Su, Y. Z., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8(4), 046011.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dmochowski, J. P., Datta, A., Huang, Y., Richardson, J. D., Bikson, M., Fridriksson, J., & Parra, L. C. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dymond, A. M., Coger, R. W., & Serafetinides, E. A. (1975). Intracerebral current levels in man during electrosleep therapy. Biological Psychiatry, 10(1), 101–104.PubMedGoogle Scholar
  22. Eaton, H. (1992). Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG. Medical & Biological Engineering & Computing, 30(4), 433–440.CrossRefGoogle Scholar
  23. Faria, P., Hallett, M., & Miranda, P. C. (2011). A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. Journal of Neural Engineering, 8(6), 066017.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ferdjallah, M., Bostick, F. X., Jr., & Barr, R. E. (1996). Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model. IEEE Transactions on Biomedical Engineering, 43(9), 939–943.PubMedCrossRefGoogle Scholar
  25. Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41(11), 2231–2249.PubMedCrossRefGoogle Scholar
  26. Galletta, E. E., Cancelli, A., Cottone, C., Simonelli, I., Tecchio, F., Bikson, M., & Marangolo, P. (2015). Use of computational modeling to inform tDCS electrode montages for the promotion of language recovery in post-stroke aphasia. Brain Stimulation, 8(6), 1108–1115.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gillick, B. T., Kirton, A., Carmel, J. B., Minhas, P., & Bikson, M. (2014). Pediatric stroke and transcranial direct current stimulation: Methods for rational individualized dose optimization. Frontiers in Human Neuroscience, 8, 739.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Halko, M. A., Datta, A., Plow, E. B., Scaturro, J., Bikson, M., & Merabet, L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. NeuroImage, 57(3), 885–891.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Huang, Y., & Parra, L. C. (2015). Fully automated whole-head segmentation with improved smoothness and continuity, with theory reviewed. PLoS One, 10(5), e0125477.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Huang, Y., Parra, L. C., & Haufe, S. (2016). The New York head-a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage, 140, 150–162.PubMedCrossRefGoogle Scholar
  31. Indahlastari, A., & Sadleir, R. J. (2015). A comparison between block and smooth modeling in finite element simulations of tDCS. Paper presented at the 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan.Google Scholar
  32. Johnson, C. R. (1997). Computational and numerical methods for bioelectric field problems. Critical Reviews in Biomedical Engineering, 25(1), 1–81.PubMedCrossRefGoogle Scholar
  33. Jung, Y.-J., Kim, J.-H., & Im, C.-H. (2013). COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). [journal article]. Biomedical Engineering Letters, 3(1), 39–46.CrossRefGoogle Scholar
  34. Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8(9), e76112.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Laakso, I., Tanaka, S., Koyama, S., De Santis, V., & Hirata, A. (2015). Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimulation, 8(5), 8.CrossRefGoogle Scholar
  36. Liebetanz, D., Koch, R., Mayenfels, S., Konig, F., Paulus, W., & Nitsche, M. A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120(6), 1161–1167.PubMedCrossRefGoogle Scholar
  37. Lopez-Alonso, V., Cheeran, B., Rio-Rodriguez, D., & Fernandez-Del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380.PubMedCrossRefGoogle Scholar
  38. Mendonca, M. E., Santana, M. B., Baptista, A. F., Datta, A., Bikson, M., Fregni, F., & Araujo, C. P. (2011). Transcranial DC stimulation in fibromyalgia: Optimized cortical target supported by high-resolution computational models. The Journal of Pain, 12(5), 610–617.PubMedCrossRefGoogle Scholar
  39. Merlet, I., Birot, G., Salvador, R., Molaee-Ardekani, B., Mekonnen, A., Soria-Frisch, A., … Wendling, F. (2013). From oscillatory transcranial current stimulation to scalp EEG changes: A biophysical and physiological modeling study. PLoS One, 8(2), e57330.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Metwally, M. K., Han, S. M., & Kim, T. S. (2015). The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation. Medical & Biological Engineering & Computing, 53(10), 1085–1101.CrossRefGoogle Scholar
  41. Minhas, P., Bikson, M., Woods, A. J., Rosen, A. R., & Kessler, S. K. (2012). Transcranial direct current stimulation in pediatric brain: A computational modeling study. Paper presented at the 34th annual international conference of the IEEE engineering in medicine and biology society (EMBC), San Diego.Google Scholar
  42. Miranda, P. C., Correia, L., Salvador, R., & Basser, P. J. (2007). Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Physics in Medicine and Biology, 52(18), 5603–5617.PubMedCrossRefGoogle Scholar
  43. Miranda, P. C., Hallett, M., & Basser, P. J. (2003). The electric field induced in the brain by magnetic stimulation: A 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50(9), 1074–1085.PubMedCrossRefGoogle Scholar
  44. Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117(7), 1623–1629.PubMedCrossRefGoogle Scholar
  45. Miranda, P. C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. NeuroImage, 70, 48–58.PubMedCrossRefGoogle Scholar
  46. Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171.PubMedCrossRefGoogle Scholar
  47. Nagarajan, S. S., Durand, D. M., & Warman, E. N. (1993). Effects of induced electric-fields on finite neuronal structures – A simulation study. IEEE Transactions on Biomedical Engineering, 40(11), 1175–1188.PubMedCrossRefGoogle Scholar
  48. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology London, 527(3), 633–639.CrossRefGoogle Scholar
  49. Oostendorp, T. F., Hengeveld, Y. A., Wolters, C. H., Stinstra, J., van Elswijk, G., & Stegeman, D. F. (2008). Modeling transcranial DC stimulation. Paper presented at the 30th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Vancouver.Google Scholar
  50. Opitz, A., Falchier, A., Yan, C. G., Yeagle, E. M., Linn, G. S., Megevand, P., … Schroeder, C. E. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6, 31236.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150.CrossRefGoogle Scholar
  52. Parazzini, M., Fiocchi, S., Cancelli, A., Cottone, C., Liorni, I., Ravazzani, P., & Tecchio, F. (2016). A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target. IEEE Transactions on Biomedical Engineering, 64, 184–195.PubMedCrossRefGoogle Scholar
  53. Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., & Ravazzani, P. (2014a). Computational modeling of transcranial direct current stimulation in the child brain: Implications for the treatment of refractory childhood focal epilepsy. International Journal of Neural Systems, 24(2), 1430006.PubMedCrossRefGoogle Scholar
  54. Parazzini, M., Fiocchi, S., & Ravazzani, P. (2012). Electric field and current density distribution in an anatomical head model during transcranial direct current stimulation for tinnitus treatment. Bioelectromagnetics, 33(6), 476–487.PubMedCrossRefGoogle Scholar
  55. Parazzini, M., Fiocchi, S., Rossi, E., Paglialonga, A., & Ravazzani, P. (2011). Transcranial direct current stimulation: Estimation of the electric field and of the current density in an anatomical human head model. IEEE Transactions on Biomedical Engineering, 58(6), 1773–1780.PubMedCrossRefGoogle Scholar
  56. Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014b). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125(3), 577–584.PubMedCrossRefGoogle Scholar
  57. Parazzini, M., Rossi, E., Rossi, L., Priori, A., & Ravazzani, P. (2013a). Evaluation of the current density in the brainstem during transcranial direct current stimulation with extra-cephalic reference electrode. Clinical Neurophysiology, 124(5), 1039–1040.PubMedCrossRefGoogle Scholar
  58. Parazzini, M., Rossi, E., Rossi, L., Priori, A., & Ravazzani, P. (2013b). Numerical estimation of the current density in the heart during transcranial direct current stimulation. Brain Stimulation, 6(3), 457–459.PubMedCrossRefGoogle Scholar
  59. Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453.PubMedCrossRefGoogle Scholar
  60. Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology London, 591(10), 2563–2578.CrossRefGoogle Scholar
  62. Rampersad, S., Stegeman, D., & Oostendorp, T. (2012). Single-layer skull approximations perform well in transcranial direct current stimulation modeling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1(3), 8.Google Scholar
  63. Rampersad, S. M., Janssen, A. M., Lucka, F., Aydin, U., Lanfer, B., Lew, S., … Oostendorp, T. F. (2014). Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 441–452.PubMedCrossRefGoogle Scholar
  64. Rattay, F. (1986). Analysis of models for external stimulation of axons. IEEE Transactions on Biomedical Engineering, 33(10), 974–977.PubMedCrossRefGoogle Scholar
  65. Roth, B. J. (1994). Mechanisms for electrical-stimulation of excitable tissue. Critical Reviews in Biomedical Engineering, 22(3–4), 253–305.PubMedGoogle Scholar
  66. Roth, B. J., Cohen, L. G., & Hallett, M. (1991). The electric field induced during magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 43, 268–278.Google Scholar
  67. Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C., & Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage, 89, 216–225.PubMedCrossRefGoogle Scholar
  68. Ruohonen, J. (1998). Transcranial magnetic stimulation: Modelling and new techniques. Unpublished PhD, Helsinki University of Technology, Espoo.Google Scholar
  69. Rush, S., & Driscoll, D. A. (1968). Current distribution in the brain from surface electrodes. Anesthesia and Analgesia, 47(6), 717–723.PubMedCrossRefGoogle Scholar
  70. Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51(4), 1310–1318.PubMedCrossRefGoogle Scholar
  71. Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2012). Target optimization in transcranial direct current stimulation. Frontiers in Psychiatry, 3, 90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Salvador, R., Silva, S., Basser, P. J., & Miranda, P. C. (2011). Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clinical Neurophysiology, 122(4), 748–758.PubMedCrossRefGoogle Scholar
  73. Salvador, R., Wenger, C., & Miranda, P. C. (2015). Investigating the cortical regions involved in MEP modulation in tDCS. [original research]. Frontiers in Cellular Neuroscience, 9: 405 (11 pages).Google Scholar
  74. Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35.PubMedCrossRefGoogle Scholar
  75. Schmidt, C., Wagner, S., Burger, M., Rienen, U., & Wolters, C. H. (2015). Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target. Journal of Neural Engineering, 12(4), 046028.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Shahid, S., Wen, P., & Ahfock, T. (2013). Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Computer Methods and Programs in Biomedicine, 109(1), 48–64.PubMedCrossRefGoogle Scholar
  77. Shahid, S. S., Bikson, M., Salman, H., Wen, P., & Ahfock, T. (2014). The value and cost of complexity in predictive modelling: Role of tissue anisotropic conductivity and fibre tracts in neuromodulation. Journal of Neural Engineering, 11(3), 036002.PubMedCrossRefGoogle Scholar
  78. Shiozawa, P., da Silva, M. E., Cordeiro, Q., Fregni, F., & Brunoni, A. R. (2013). Transcranial direct current stimulation (tDCS) for the treatment of persistent visual and auditory hallucinations in schizophrenia: A case study. Brain Stimulation, 6(5), 831–833.PubMedCrossRefGoogle Scholar
  79. Suh, H. S., Kim, S. H., Lee, W. H., & Kim, T. S. (2009). Realistic simulation of transcranial direct current stimulation via 3-D high-resolution finite element analysis: Effect of tissue anisotropy. Paper presented at the 29th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Minneapolis.Google Scholar
  80. Suh, H. S., Lee, W. H., & Kim, T. S. (2012). Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model. Physics in Medicine and Biology, 57(21), 6961–6980.PubMedCrossRefGoogle Scholar
  81. Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 222–225.Google Scholar
  82. Tofts, P. S. (1990). The distribution of induced currents in magnetic stimulation of the nervous-system. Physics in Medicine and Biology, 35(8), 1119–1128.PubMedCrossRefGoogle Scholar
  83. Truong, D. Q., Huber, M., Xie, X., Datta, A., Rahman, A., Parra, L. C., … Bikson, M. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7(4), 521–524.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Truong, D. Q., Magerowski, G., Blackburn, G. L., Bikson, M., & Alonso-Alonso, M. (2013). Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clinical, 2, 759–766.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Turkeltaub, P. E., Benson, J., Hamilton, R. H., Datta, A., Bikson, M., & Coslett, H. B. (2012). Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimulation, 5(3), 201–207.PubMedCrossRefGoogle Scholar
  86. Wagner, T., Eden, U., Rushmore, J., Russo, C. J., Dipietro, L., Fregni, F., … Valero-Cabré, A. (2014a). Impact of brain tissue filtering on neurostimulation fields: A modeling study. NeuroImage, 85(Pt 3), 1048–1057.PubMedCrossRefGoogle Scholar
  87. Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. NeuroImage, 35(3), 1113–1124.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wagner, S., Rampersad, S. M., Aydin, U., Vorwerk, J., Oostendorp, T. F., Neuling, T., … Wolters, C. H. (2014b). Investigation of tDCS volume conduction effects in a highly realistic head model. Journal of Neural Engineering, 11(1), 016002.PubMedCrossRefGoogle Scholar
  89. Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475.CrossRefGoogle Scholar
  90. Windhoff, M., Opitz, A., & Thielscher, A. (2013). Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 34(4), 923–935.PubMedCrossRefGoogle Scholar
  91. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ricardo Salvador
    • 1
  • Dennis Q. Truong
    • 2
  • Marom Bikson
    • 3
  • Alexander Opitz
    • 4
  • Jacek Dmochowski
    • 5
  • Pedro C. Miranda
    • 6
    Email author
  1. 1.NeuroelectricsBarcelonaSpain
  2. 2.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  3. 3.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA
  4. 4.Department of Biomedical Engineering, University of MinnesotaMinneapolisUSA
  5. 5.Neural Engineering Laboratory, Department of Biomedical Engineering, Grove School of EngineeringThe City College of the City University of New YorkNew YorkUSA
  6. 6.Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de LisboaLisbonPortugal

Personalised recommendations