Stimulation Parameters and Their Reporting

  • Adam J. Woods
  • Helena Knotkova
  • Alexa Riggs
  • Dennis Q. Truong
  • Marom BiksonEmail author


The stimulation parameters for transcranial direct current stimulation (tDCS), called stimulation dose, are straightforward and are summarized in this chapter. tDCS dose is set by the stimulation current, duration, and electrode montage. And yet it is necessary to emphasize that the apparent simplicity of describing tDCS dose (1) cannot supplement using poorly designed equipment, head-gear, or electrodes and (2) is no justification for insufficient training of operators including electrode preparation. Proper equipment and rigorous training is critical for reproducibility of dose and tolerability, and so a trial that reports dose but fails to consider how to implement that dose through equipment and protocols may not be reproducible (as further discussed in Chaps. 7 and 10), including critical considerations for home use (Chap. 13). Despite the apparent simplicity of tDCS dose there is tremendous potential for flexibility and customization of tDCS: any current can be combined with any duration, with many permutations of electrode montage. There is tremendous sophistication in the design of tDCS dose including leveraging computational models of current flow (Chap. 4) and neurons (Chap. 2) or imaging (Chap. 11). The issues surrounding the selection of stimulation parameters and ensuring they are rigorously applied are thus addressed throughout this book, and this chapter only emphasizes what those parameters are, and additional factors related to tolerability.


tDCS stimulation parameters tDCS dose Electrode montage Direct current flow 


  1. Acler, M., Bocci, T., Valenti, D., Turri, M., Priori, A., & Bertolasi, L. (2013). Transcranial direct current stimulation (tDCS) for sleep disturbances and fatigue in patients with post-polio syndrome. Restorative Neurology and Neuroscience, 31(5), 661–668.PubMedGoogle Scholar
  2. Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85(3), 1040–1047.PubMedCrossRefGoogle Scholar
  3. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clinical Neurophysiology, 121(12), 1976–1978.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chhatbar, P. Y., Chen, R., Deardorff, R., Dellenbach, B., Kautz, S. A., George, M. S., & Feng, W. (2017). Safety and tolerability of transcranial direct current stimulation to stroke patients – A phase I current escalation study. Brain Stimulation, 10(3), 553–559.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Clemens, B., Jung, S., Mingoia, G., Weyer, D., Domahs, F., & Willmes, K. (2014). Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS One, 9(4), e95984.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Dasilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dossantos, M. F., Spierings, E. L., … Fregni, F. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52(8), 1283–1295.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Datta, A., Elwassif, M., Battaglia, F., & Bikson, M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 5(2), 163–174.CrossRefGoogle Scholar
  9. Dmochowski, J. P., Datta, A., Huang, Y., Richardson, J. D., Bikson, M., Fridriksson, J., & Parra, L. C. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dmochowski, J. P., Bikson, M., Datta, A., Richardson, J., Fridriksson, J., & Parra, L. C. (2012). On the role of electric field orientation in optimal design of transcranial current stimulation. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6426, 9.Google Scholar
  11. D’Urso, G., Mantovani, A., Micillo, M., Priori, A., & Muscettola, G. (2013). Transcranial direct current stimulation and cognitive- behavioral therapy: evidence of a synergistic effect in treatment-resistant depression. Brain Stimulation, 6(3), 465–467.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Esmaeilpour, Z., Schestatsky, P., Bikson, M., Brunoni, A. R., Pellegrinelli, A., Piovesan, F. X., … Fregni, F. (2017). Notes on human trials of transcranial direct current stimulation between 1960 and 1998. Frontiers in Human Neuroscience, 11, 71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ferrucci, R., Vergari, M., Cogiamanian, F., Bocci, T., Ciocca, M., Tomasini, E., … Priori, A. (2014). Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. Neuropsychological Rehabilitation, 34(1), 121.Google Scholar
  14. Fertonani, A., Ferrari, C., & Miniussi, C. (2015). What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical Neurophysiology, 126(11), 2181–2188.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kronberg, G., & Bikson, M. (2012). Electrode assembly design for transcranial Direct Current Stimulation: a FEM modeling study. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 891–895.Google Scholar
  16. Kühnl, S., Terney, D., Paulus, W., & Antal, A. (2008). The effect of daily sessions of anodal tDCS on chronic pain. Brain Stimulation, 3, 281.CrossRefGoogle Scholar
  17. Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? The European Journal of Neuroscience, 22(2), 495–504.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Minhas, P., Bansal, V., Patel, J., Ho, J. S., Diaz, J., Datta, A., & Bikson, M. (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 190(2), 188–197.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Moliadze, V., Andreas, S., Lyzhko, E., Schmanke, T., Gurashvili, T., Freitag, C. M., & Siniatchkin, M. (2015). Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: Self-reports and resting state EEG analysis. Brain Research Bulletin, 119, 25–33.PubMedCrossRefGoogle Scholar
  20. Nitsche, M. A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Paneri, B., Adair, D., Thomas, C., Khadka, N., Patel, V., Tyler, W. J., … Bikson, M. (2016). Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimulation, 9(5), 740–754.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Peterchev, A. V., Wagner, T. A., & Miranda, P. C. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453.CrossRefGoogle Scholar
  24. Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Transactions on Biomedical Engineering, 61(7), 1967–1978.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Salimpour, Y., Mills, K. A., Wei, Z., Duy, P. Q., & Anderson, W. S. (2016a). Does transcranial direct current stimulation actually deliver DC stimulation: response to letter to the editor. Brain Stimulation, 9(4), 627–628.PubMedCrossRefGoogle Scholar
  26. Salimpour, Y., Wei, Z., Duy, P. Q., & Anderson, W. S. (2016b). Does transcranial direct current stimulation actually deliver DC stimulation? Brain Stimulation, 9(4), 623–624.PubMedCrossRefGoogle Scholar
  27. Sandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L. G., & Cotelli, M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6, 289.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Sellers, K. K., Mellin, J. M., Lustenberger, C. M., Boyle, M. R., Lee, W. H., Peterchev, A. V., & Fröhlich, F. (2015). Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behavioural Brain Research, 290, 32–44.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Truong, D. Q., Hüber, M., Xie, X., Datta, A., Rahman, A., Parra, L. C., … Bikson, M. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7(4), 521–524.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Woods, A. J., Antal, A., Bikson, M., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Adam J. Woods
    • 1
  • Helena Knotkova
    • 2
    • 3
  • Alexa Riggs
    • 4
  • Dennis Q. Truong
    • 5
  • Marom Bikson
    • 6
    Email author
  1. 1.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health PsychologyCollege of Public Health and Health Professions, University of FloridaGainesvilleUSA
  2. 2.MJHS Institute for Innovation in Palliative CareNew YorkUSA
  3. 3.Department of Family and Social MedicineAlbert Einstein College of MedicineBronxUSA
  4. 4.MJHS Institute for Innovation in Palliative CareNew YorkUSA
  5. 5.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  6. 6.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA

Personalised recommendations