Methodological Considerations for Selection of Transcranial Direct Current Stimulation Approach, Protocols and Devices

  • Shapour Jaberzadeh
  • Donel Martin
  • Helena Knotkova
  • Adam J. WoodsEmail author


This chapter describes the methodological considerations for selection of transcranial direct current stimulation (tDCS) approaches, protocols and devices for studies conducted in both healthy individuals and patients with different pathological conditions. The first section of the chapter discusses evidence-based use of tDCS. The second section of the chapter describes tDCS as a neuroscience research tool, which is used for better understanding of the neural substrates of performance on cognitive, sensory and motor tasks. A brief description of blinding and sham procedure in tDCS studies is also provided in this chapter. The third section of this chapter briefly describes methodological considerations in relation to clinical use of tDCS as a stand-alone or adjunctive technique to prime the effects of other interventions for the treatment of psychological and neurological disorders and pain management. In this section, contributions of tDCS research to evidence-based medicine will also be discussed. The final section of this chapter provides a decision diagram that outlines the following nine parameters associated with selection of tDCS protocols: (1) Goals of tDCS, (2) Characteristics of applied current, (3) Electrode size, (4) Stimulation site, (5) Montage selection, (6) tDCS devices, (7) Single-site versus multi-site stimulation, (8) Frequency of tDCS application, (9) Targeted population. A brief conclusion will be provided at the end of chapter.


tDCS protocols tDCS approach Cortical tasks Behavioral tasks Brain-behavior relationship Blinding Sham tDCS Single session tDCS Multiple sessions tDCS Single site stimulation Multi-site stimulation tDCS montage tDCS parameters Mechanistic studies Pragmatic studies 


  1. Accornero, N., Li Voti, P., & La Riccia, M. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research, 178(2), 261–266.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agnew, W. F., & Mccreery, D. B. (1987). Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery, 20, 143–147.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alonzo, A., Aaronson, S., Bikson, M., Husain, M., Lisanby, S., Martin, D., … Loo, C. (2016). Study design and methodology for a multicentre, randomised controlled trial of transcranial direct current stimulation as a treatment for unipolar and bipolar depression. Contemporary Clinical Trials, 51, 65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alonzo, A., Brassil, J., Talyor, J., Martin, D., & Loo, C. K. (2012). Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimulation, 5, 208–213.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ambrus, G. G., Al-Moyed, H., & Chaieb, L. (2012). The fade-in--short stimulation – fade out approach to sham tDCS – reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimulation, 5(4), 499–504.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ambrus, G. G., Paulus, W., & Antal, A. (2010). Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 121, 1908–1914. PubMedCrossRefPubMedCentralGoogle Scholar
  7. Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. Neuroimage, 85 Pt 3, 1040–1047.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Antal, A., Nitsche, M. A., & Kruse, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. The European Journal of Neuroscience, 26(9), 2687–2691.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Anton, S. D., Woods, A. J., Ashizawa, T., Barb, D., Buford, T. W., Carter, C. S., … Pahor, M. (2015). Successful aging: Advancing the science of physical independence in older adults. Ageing Research Reviews, 24, 304–327.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aparício, L. V. M., Guarienti, F., Razza, L. B., Carvalho, A. F., Fregni, F., & Brunoni, A. R. (2016). A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimulation, 9, 671–681.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Apolinário-Souza, T., Romano-Silva, M. A., de Miranda, D. M., Malloy-Diniz, L. F., Benda, R. N., Ugrinowitsch, H., & Lage, G. M. (2016). The primary motor cortex is associated with learning the absolute, but not relative, timing dimension of a task: A tDCS study. Physiology & Behavior, 160, 18–25. CrossRefGoogle Scholar
  13. Assenza, G., Campana, C., Formica, D., Schena, E., Taffoni, F., Di Pino, G., & Di Lazzaro, V. (2014). Efficacy of cathodal transcranial direct current stimulation in drug-resistant epilepsy: A proof of principle. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, 530–533.Google Scholar
  14. Bardi, L., Kanai, R., Mapelli, D., & Walsh, V. (2013). Direct current stimulation (tDCS) reveals parietal asymmetry in local/global and salience-based selection. Cortex, 49(3), 850–860.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bastani, A., & Jaberzadeh, S. (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis. Clinical Neurophysiology, 123, 644–657.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bastani, A., & Jaberzadeh, S. (2013a). Differential modulation of corticospinal plasticity by different current densities of anodal transcranial direct current stimulation. PLoS One, 8, e72254. PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bastani, A., & Jaberzadeh, S. (2013b). A-tDCS differential modulation of corticospinal excitability: The effects of electrode size. Brain Stimulation, 6(6), 932–937.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bastani, A., & Jaberzadeh, S. (2014). Within-session repeated a-tDCS: The effects of repetition rate and inter-stimulus interval on corticospinal excitability and motor performance. Clinical Neurophysiology, 125(9), 1809–1818. PubMedCrossRefPubMedCentralGoogle Scholar
  19. Batsikadze, G., Moliadze, V., & Paulus, W. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Baudewig, J., Nitsche, M. A., & Paulus, W. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45, 196–201.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of "return" electrode's position and size. Clinical Neurophysiology, 121, 1976–1978.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bikson, M., Grossman, P., Zannou, A. L., Kronberg, G., Truong, D., Boggio, P., … Woods, A. J. (2017). Response to letter to the editor: Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 10(5), 986–987.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Boggio, P. S., Rigonatti, S. P., Ribeiro, R. B., Myczkowski, M. L., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. The International Journal of Neuropsychopharmacology, 11(2), 249–254.PubMedCrossRefGoogle Scholar
  25. Boros, K., Poreisz, C., Munchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. The European Journal of Neuroscience, 27, 1292–1300. PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bortoletto, M., Veniero, D., Thut, G., & Miniussi, C. (2014). The contribution of TMS–EEG coregistration in the exploration of the human cortical connectome. Neuroscience and Biobehavioral Reviews, 49C, 114–124.Google Scholar
  27. Boutron, I., Guittet, L., Estellat, C., Moher, D., Hróbjartsson, A., & Ravaud, P. (2007). Reporting methods of blinding in randomized trials assessing nonpharmacological treatments. PLoS Medicine, 4(2), e61.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bronstein, J. M., Tagliati, M., McIntyre, C., Chen, R., Cheung, T., Hargreaves, E. L., … Okun, M. S. (2015). The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation, 18, 85–89.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The International Journal of Neuropsychopharmacology, 14(8), 1133–1145.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., … Loo, C. K. (2016). Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. [Review]. British Journal of Psychiatry.Google Scholar
  31. Brunoni, A. R., Schestatsky, P., Lotufo, P. A., Benseñor, I. M., & Fregni, F. (2014). Comparison of blinding effectiveness between sham tDCS and placebo sertraline in a 6-week major depression randomized clinical trial. Clinical Neurophysiology, 125(2), 298–305.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brunoni, A. R., Valiengo, L., Baccaro, A., Zanão, T. A., de Oliveira, J. F., Goulart, A., … Fregni, F. (2013). The sertraline versus electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry, 70(4), 383–391.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Caparelli-Daquer, E. M., Zimmermann, T. J., Mooshagian, E., Parra, L. C., Rice, J. K., Datta, A., … Wassermann, E. M. (2012). A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Google Scholar
  34. Charvet, L. E., Kasschau, M., Datta, A., Knotkova, H., Stevens, M. C., Alonzo, A., … Bikson, M. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Frontiers in Systems Neuroscience, 9, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neuroscience, 13, 108.PubMedPubMedCentralCrossRefGoogle Scholar
  36. D’Urso, G., Mantovani, A., Micillo, M., Priori, A., & Muscettola, G. (2013). Transcranial direct current stimulation and cognitive-behavioral therapy: Evidence of a synergistic effect in treatment-resistant depression. [Case Reports Letter]. Brain Stimulation, 6(3), 465–467.PubMedCrossRefPubMedCentralGoogle Scholar
  37. DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments. (51):e2744.Google Scholar
  38. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri -precise head model of transcranial DC stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8, 46011.CrossRefGoogle Scholar
  40. Dundas, J. E., Thickbroom, G. W., & Mastaglia, F. L. (2007). Perception of comfort during transcranial DC stimulation: Effect of NaCl solution concentration applied to sponge electrodes. Clinical Neurophysiology, 118(5), 1166–1170.PubMedCrossRefGoogle Scholar
  41. Elmasry, J., Loo, C., & Martin, D. (2015). A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative Neurology and Neuroscience, 33(3), 263–278.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Elsner, B., Kugler, J., Pohl, M., & Mehrholz, J. (2016). Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database of Systematic Reviews. Google Scholar
  43. Ezquerro, F., Moffa, A. H., Bikson, M., Khadka, N., Aparicio, L. V. M., de Sampaio-Junior, B., … Brunoni, A. R. (2017). The influence of skin redness on blinding in transcranial direct current stimulation studies: A crossover trial. Neuromodulation, 20, 248–255.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Faria, P., Hallett, M., & Miranda, P. C. (2011). A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. Journal of Neural Engineering, 8, 66017.CrossRefGoogle Scholar
  45. Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fregni, F., & Pascual-Leone, A. (2007). Technology insight: Noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice. Neurology, 3(7), 383–393.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Furubayashi, T., Terao, Y., Arai, N., Okabe, S., Mochizuki, H., Hanajima, R., … Ugawa, Y. (2008). Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Experimental Brain Research, 185, 279–286.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Furuya, S., Klaus, M., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. The Journal of Neuroscience, 34(41), 13834–13839.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Galvez, V., Alonzo, A., & Martin, D. (2013). Transcranial direct current stimulation treatment protocols: Should stimulus intensity be constant or incremental over multiple sessions? International Journal of Neuropsychopharmacology, 16, 13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850.PubMedCrossRefPubMedCentralGoogle Scholar
  52. George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 35(1), 301–316.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goldsworthy, M. R., Pitcher, J. B., & Ridding, M. C. (2015). Spaced noninvasive brain stimulation: Prospects for inducing long- lasting human cortical plasticity. Neurorehabilitation and Neural Repair, 28(8), 714–721. PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hendy, A. M., Teo, W. P., & Kidgell, D. J. (2015). Anodal transcranial direct current stimulation prolongs the cross-education of strength and corticomotor plasticity. Medicine and Science in Sports and Exercise, 47(9), 1788–1797.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W., & Kirker, S. G. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25, 9–15.PubMedPubMedCentralGoogle Scholar
  56. Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife, 6, e18834.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490–499.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hummel, F. C., & Cohen, L. G. (2006). Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke? Lancet Neurology, 5(8), 708–712.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Iuculano, T., & Cohen Kadosh, R. (2013). The mental cost of cognitive enhancement. The Journal of Neuroscience, 33(10), 4482–4486.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Iyer, M. B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., & Wassermann, E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology, 64(5), 872–875.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jaberzadeh, S., Bastani, A., & Kidgell, D. (2012). Does the longer application of anodal-transcranial direct current stimulaton increase corticomotor excitability further? A pilot study. Basic and Clinical Neuroscience, 3, 28–35.Google Scholar
  62. Jog, M. V., Smith, R. X., Jann, K., Dunn, W., Lafon, B., Truong, D., … Wang, D. J. J. (2016). In-vivo imaging of magnetic fields induced by transcranial direct current stimulation (tDCS) in human brain using MRI. Scientific Reports, 6, 34385.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kabakov, A. Y., Muller, P. A., Pascual-Leone, A., Jensen, F. E., & Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology, 107, 1881–1889.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kasschau, M., Sherman, K., Haider, L., Frontario, A., Shaw, M., Datta, A., … Charvet, L. (2015). A protocol for the use of remotely-supervised transcranial direct current stimulation (tDCS) in multiple sclerosis (MS). Journal of Visualized Experiments. (106):e53542.Google Scholar
  65. Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8, e76112.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lang, N., Nitsche, M. A., Paulus, W., Rothwell, J. C., & Lemon, R. N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research, 156, 439–443.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? The European Journal of Neuroscience, 22, 495–504.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Loo, C., Martin, D., Pigot, M., Arul-Anandam, P., Mitchell, P., & Sachdev, P. (2009). Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: A pilot study. Journal of ECT, 25, 256–260.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lowe, C. J., Vincent, C., & Hall, P. A. (2017). Effects of noninvasive brain stimulation on food cravings and consumption: A meta-analytic review. Psychosomatic Medicine, 79, 2–13.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Martin, D. M., Liu, R., Alonzo, A., Green, M., & Loo, C. K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research, 232, 3345–3351.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mehta, S., McIntyre, A., Guy, S., Teasell, R. W., & Loh, E. (2015). Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: A meta-analysis. Spinal Cord, 53(11), 780–785.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., Ulm, L., & Floel, A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Frontiers in Aging Neuroscience, 6. Google Scholar
  73. Minhas, P., Bikson, M., Woods, A. J., Rosen, A. R., & Kessler, S. K. (2012). Transcranial direct current stimulation in pediatric brain: A computational modeling study. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 859–862.Google Scholar
  74. Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W., & Nitsche, M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. The Journal of Physiology, 588, 3415–3424. PubMedPubMedCentralCrossRefGoogle Scholar
  75. Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6, 424–432.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Moreau, D., Wang, C. H., Tseng, P., & Juan, C. H. (2015). Blending transcranial direct current stimulations and physical exercise to maximize cognitive improvement. Frontiers in Psychology, 22(6), 678.Google Scholar
  77. Nakagawa, K., Mochizuki, H., Koyama, S., Tanaka, S., Sadato, N., & Kakigi, R. (2016). A transcranial direct current stimulation over the sensorimotor cortex modulates the itch sensation induced by histamine. Clinical Neurophysiology, 127(1), 827–832.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nitsche, M. A., Muller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: Building models for the clinical use of CNS active drugs. The Journal of Physiology, 590, 4641–4662.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A review. Experimental Neurology, 219(1), 14–19.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553.(Pt 1, 293–301.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nitsche, M. A., Doemkes, S., Karaköse, T., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117. PubMedCrossRefPubMedCentralGoogle Scholar
  85. Noseworthy, J. H1., Ebers, G. C., Vandervoort, M. K., Farquhar, R. E., Yetisir, E., & Roberts, R. (1994). The impact of blinding on the results of a randomized, placebo-controlled multiple sclerosis clinical trial. Neurology, 44(1), 16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  86. O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & De Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2mA. PLoS One, 7(10), e47514. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Palm, U., Reisinger, E., & Keeser, D. (2013). Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimulation, 6, 690–695. PubMedCrossRefPubMedCentralGoogle Scholar
  88. Picazio, S., Granata, C., Caltagirone, C., Petrosini, L., & Oliveri, M. (2015). Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Frontiers in Human Neuroscience, 26(9), 158.Google Scholar
  89. Polanía, R., Paulus, W., & Nitsche, M. A. (2012). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Human Brain Mapping, 33, 2499–2508.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pope, P. A., Brenton, J. W., & Miall, R. C. (2015). Task-specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cerebral Cortex, 25(11), 4551–4558.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of Tran-scranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Priori, A., Berardelli, A., Rona, S., Accornero, N., & Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport, 9, 2257–2260.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Richardson, J. D., Fillmore, P., Datta, A., Truong, D., Bikson, M., & Fridriksson, J. (2014). Toward development of sham protocols for high- definition transcranial direct current stimulation (HD-tDCS). NeuroRegulation, 1(1), 62–72. CrossRefGoogle Scholar
  94. Rostami, R., Badran, B. W., & Kazemi, R. (2015). Long-lasting analgesic effect of transcranial direct current stimulation in treatment of chronic endometriosis pain. The Journal of Obstetrics and Gynaecology Research, 41(12), 1998–2001.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rowny, S., & Lisanby, S. H. (2008). Brain stimulation in psychiatry. Wiley-Blackwell, West Sussex, England: InPsychiatry (3rd ed., pp. 2354–2371).CrossRefGoogle Scholar
  96. Russo, C., Souza Carneiro, M. I., Bolognini, N., & Fregni, F. (2017). Safety review of transcranial direct current stimulation in stroke. Neuromodulation, 20, 215–222.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Russowsky Brunoni, A. I., Sampaio-Junior, B. I., Henrique Moffa, A., III, Borrione, L. I., Schwair Nogueira, B., III, Vanessa Marotti Aparício, L. V., … Martins Benseñor, I. (2015). The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): Rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. São Paulo Medical Journal, 133, 252–263.CrossRefGoogle Scholar
  98. Schambra, H. M., Bikson, M., Wager, T. D., Dossantos, M. F., & Dasilva, A. F. (2014). It’s all in your head: Reinforcing the placebo response with tDCS. Brain Stimulation, 7, 623–624.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schestatsky, P., Morales-Quezada, L., & Fregni, F. (2013). Simultaneous EEG monitoring during transcranial direct current stimulation. Journal of Visualized Experiments, 76, 1–11.Google Scholar
  100. Soekadar, S. R., Witkowski, M., & Cossio, E. G. (2014). Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: Feasibility and limitations. Frontiers in Behavioral Neuroscience. eCollection 2014.Google Scholar
  101. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. [Research Support, Non-U.S. Gov’t]. Neuropsychologia, 49(5), 800–804.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stagg, C. J., Lin, R. L., Mezue, M., Segerdahl, A., Kong, Y., Xie, J., & Tracey, I. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. [Research Support, Non-U.S. Gov’t]. The Journal of Neuroscience, 33(28), 11425–11431.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Truong, D. Q., Hüber, M., Xie, X., Datta, A., Rahman, A., Parra, L. C., … Bikson, M. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7, 521–524.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Turner, L., Shamseer, L., Altman, D. G., Schulz, K. F., & Moher, D. (2012). Does use of the CONSORT statement impact the completeness of reporting of randomised controlled trials published in medical journals? A Cochrane review. Cochrane Database Systematic Review. Google Scholar
  106. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2015a). How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. PLoS One, 10(3), e0118340. eCollection 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2015b). Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception – a double-blind randomised sham-controlled study. The European Journal of Neuroscience, 42(7), 2426–2437.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2016). Unihemispheric concurrent dual-site cathodal transcranial direct current stimulation: The effects on corticospinal excitability. The European Journal of Neuroscience, 43, 1161–1172.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Villamar, M. F., Volz, M. S., Bikson, M., Datta, A., Dasilva, A. F., & Fregni, F. (2013). Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). Journal of Visualized Experiments. (77):e50309.Google Scholar
  110. Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. NeuroImage, 35, 1113–1124.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127, 1031–1048.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Woods, A. J., Hamilton, R. H., Kranjec, A., Minhaus, P., Bikson, M., Yu, J., & Chatterjee, A. (2014). Space, time, and causality in the human brain. NeuroImage, 92, 285–297.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M., Leung, G. K., & Masters, R. S. (2015). Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation, 8(4), 784–786.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Shapour Jaberzadeh
    • 1
  • Donel Martin
    • 2
  • Helena Knotkova
    • 3
    • 4
  • Adam J. Woods
    • 5
    Email author
  1. 1.Department of PhysiotherapySchool of Primary Health Care, Faculty of Medicine Nursing and Health Sciences, Monash UniversityMelbourneAustralia
  2. 2.Black Dog Institute, The University of New South WalesSydneyAustralia
  3. 3.MJHS Institute for Innovation in Palliative CareNew YorkUSA
  4. 4.Department of Family and Social MedicineAlbert Einstein College of MedicineBronxUSA
  5. 5.Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of FloridaGainesvilleUSA

Personalised recommendations